
Obligation Language for Access Control and
Privacy Policies

Muhammed Ali1, Laurent Bussard1, and Ulrich Pinsdorf1

European Microsoft Innovation Center, Ritterstr. 23, 52072 Aachen, Germany,
{i-alimuh|lbussard|ulrich.pinsdorf}@microsoft.com,

WWW home page: http://www.microsoft.com/emea/emic

Abstract. Defining and enforcing obligations are key aspects of pri-
vacy protection. Most of today’s access control and data handling lan-
guages recognize the importance of obligations and even provide exten-
sion points but lack concrete language constructs to actually express
obligations. This position paper proposes requirements for a general ob-
ligation language spanning access control and usage control. A detailed
analysis of our current obligation language and enforcement framework
is provided and future extensions are discussed.

1 Introduction

Data handling is an important part of privacy that reaches beyond pure access
control. While access control defines whether access to data is granted, data han-
dling policies define what may happen to the data once the access was granted.
Data handling consists of two parts: first, it defines rights of the data consumer
to store, process, and share a given piece of data. Second, it defines obligations
that the data consumer has to commit to.

We define an obligation as: “The promise made by the subject1, to the user.
The subject is expected to fulfill the promise by executing and/or preventing a
specific action after a particular event, e.g. time, and optionally under certain
conditions”.

Obligations play an important role in daily business. Most companies have
a process to collect personally identifiable information (PII) on customers and
ad-hoc mechanisms to keep track of associated rights and obligations. State
of the art mechanisms to handle collected PII accordingly to a privacy policy
are lacking expressiveness and/or support for cross-domain obligation definition.
Please look at Sect. 5 for a complete evaluation of the state of the art.

We identify four main challenges related to obligations. 1) Service providers
must avoid committing to obligations that cannot be enforced. For instance,
it is not straightforward to delete data with backup copies. Tools to detect
inconsistencies are necessary. 2) Users do care about their privacy and have
1 In obligation lingo, the subject is the subject of the obligation, i.e. the service

provider (or data controller). Do not confuse with the user (subject of the data),
generally referred as “data subject” in privacy terminology.

Copyright and Reference Information: This material (preprint, accepted manuscript, or other author-distributable version) is provided to ensure timely dissemination of scholarly work.
Copyright and all rights therein are retained by the author(s) and/or other copyright holders. All persons copying this work are expected to adhere to the terms and constraints invoked by
these copyrights. This work is for personal use only and may not be redistributed without the explicit permission of the copyright holder. The definite version of this work is published as

[·] Muhammad Ali, Laurent Bussard and Ulrich Pinsdorf. Obligation language and framework to enable privacy-aware soa. In Joaquin Garcia-Alfaro, Guillermo Navarro-Arribas, Nora
Cuppens-Boulahia and Yves Roudier (editors), In Proc. of the 4th Int’l Workshop on Data Privacy Management (DPM 2009) and the 2nd Int’l Workshop on Autonomous Spontaneous Security (SETOP 2009),
Volume 5939 of Lecture Notes in Computer Science (LNCS), pages 18–32. Springer-Verlag, 2010. The original publication is available at www.springerlink.com.

See http://www.net.fim.uni-passau.de/papers/Ali2010a for full reference details (BibTeX, XML).

2

privacy preferences. Preferences may be expressed by ticking check boxes, be a
full policy, or even be provided by a trusted third party. Mechanisms to match
users privacy preferences and services privacy policies are necessary. 3) Services
need a way to express to users obligations, to link obligations and PII, and to
enforce them. 4) Users need a way to evaluate the trustworthiness of service
providers, i.e. know whether the obligation will indeed be enforced. This could
be achieved by assuming that misbehavior impacts reputation, by audit and
certification mechanisms, and/or by relying on trusted computing.

While our ongoing work addresses aspects of those four topics, the contribu-
tions of this paper are mainly related to the third one. Section 3 describes our
proposed general-purpose obligation language. It is expressive enough to specify
complex real-world obligations and can be extended with domain specific trig-
gers and actions. This obligation language enables cross-domain scenarios where
obligations must be semantically understood on user side and server side. This
enables both data handling policies and access control policies to make practical
use of obligations. Section 4 gives an overview on the architecture for exchanging
and enforcing obligations.

2 Requirements for Obligations

This section describes general requirements for an obligation language and en-
forcement framework. This list was compiled by looking at scenarios and require-
ments in [1–5].

Requirement 1: Independence from policy language. Obligations can be en-
forced independently from the embedding policy languages offering the place-
holder for the obligation. Thus the obligation framework needs to be technically
decoupled from the policy engine. The obligation framework can also be used to
enforce policies that are exposed by the service, e.g. P3P [6].

Requirement 2: Independence from data storage. The obligation handling
must be independent from the concrete data store. The obligation travels with
the data and should be stored along with the data so that the reference does
not get lost. For instance, the obligation may refer to personal data stored in a
database or to documents stored in a file system. Moreover one obligation may
refer to multiple pieces of data.

Requirement 3: Independence from communication protocols. The framework
must be independent from the communication protocol. For instance, Web Ser-
vices, REST, or plain HTTP could be used to exchange data and obligations.

Requirement 4: Support for common obligations. The obligation handling
language should be extensible but not empty. Usual actions such as, for instance,
delete, anonymize, notify user, get approval from user, log should be available
with different implementations. Triggers for a time-based and an event-based
execution need to be defined.

Requirement 5: Support for domain specific obligations. The framework must
be open to define additional domain specific obligations. This requires mecha-

3

nisms to define new types of actions and triggers. In any case the semantic of
these new elements has to be understood by all involved actors.

Requirement 6: Support for abstraction of actions. The obligation language
must offer abstract actions which are configurable for the specific purpose. For
instance, a notify user action might be implemented as sending an e-mail, send-
ing an SMS, sending a voice message, or calling (and authenticating to) a web
service.

Requirement 7: Support for abstraction of triggers. The obligation language
must offer abstract and configurable triggers. For instance, a trigger ”access PII”
may react both to a query on a database and to a read operation on a file server.

Requirement 8: Support for distributed deployment. Different deployments of
the obligation framework can be envisioned: a corporate-wide obligation frame-
work could cover multiple data bases, a desktop obligation framework could deal
with local files, or it could even be provided as a “cloud service”. In any cases,
only one obligation framework is in charge of a specific piece of data.

Requirement 9: Support for different trust models. Users have to trust the
service provider, i.e. assume that it will fulfill obligations. The anchor of trust
could be based on various technologies, e.g. a trusted stack (certified TPM [7],
trusted OS), reputation, or certification by external auditors. The structure of
obligations should be independent from the trust model.

Requirement 10: Transparency of data handling. The obligation enforcement
as well as mechanisms to load policies should be comprehensive so that data
processors and auditors can easily check whether a specific deployment is com-
pliant with a given specification. This is a prerequisite to enable data-handling
transparency toward end users.

Requirement 11: Support for preventive obligations. The obligation language
shall be able to express preventive statements that forbid the execution of an
action. For instance, the obligation to store logs six months will forbid deletion
of log files.

3 Formal Description of Obligations

Formally, we represent obligation o as a tuple 〈s, a, ξ, c, e〉 where s is a subject
which is obliged to fulfill the obligation, a is an action which is executed/pre-
vented to fulfill obligation, ξ is a set of triggers, c is a boolean equation specifying
conditions under which the obligation rule would be active and e is the set of
events which are sent outward in case of a change in state of obligation e.g.
violation or fulfillment. We use O is the set of all possible obligations.

Subject Subject s is an identifier for the data processing party that needs
to obey an obligation; s ∈ S where S denotes the set of all existing subject
identifiers.

4

Action Action a is the activity executed to fulfill an obligation and is repre-
sented as a tuple 〈i, p, at〉 with i ∈ I, where I represents the set of all possi-
ble action identifiers. Each element of I can be uniquely mapped to available
actions within the system using a bijection map : I → A. The action param-
eters p is a set of name/value pairs. We classify actions by their action type
at ∈ {proactive, preventive}

– Proactive actions which require the execution of actions proactively. For
example Delete, SendEmail etc.

– Preventive actions which can only be prevented from executing to fulfill the
corresponding obligation promise. This class of actions add lot of expressive-
ness into our language and does allow negative obligation statements like
Subject X commits never Sharing U’s data with anyone where the action
never share itself is never executed but the fulfillment is done by preventing
the action share. For accomplishing this behavior, we need to integrate our
framework with external infrastructure of the organization.

We do not allow actions which can be used as both proactive and preventive
within one policy.

An obligation rule contains single action, however we envision that this action
itself can be composed of many basic actions arranged in a complex manner. This
restriction has been put to avoid ambiguity. Indeed, if we would have two actions,
e.g. Delete and SendNotification, in the same rule and the first one is executed
successfully while the second fails the overall status of the rule is undecidable
(fulfilled or violated). We consider deciding the status of rules having multiple
actions as a difficult problem which is part of our future work (see Sect. 6).

Triggers Triggers define the types of inward events which result in the execution
of the obligation’s action. Multiple triggers can be defined for a single obligation.
Triggers can be deterministic where we know the precise time instant when the
trigger will be fired and we classify them as AbsoluteTimeTriggers. Such triggers
can be defined by a tuple 〈τ, d〉 where τ is any absolute point in future time and
d is the timeout duration. The rule must be fulfilled before τ + d. Deterministic
triggers, in conjunction with temporal conditions, provides the capability to
express time bounded obligations as the rule activation time frame and time to
trigger execution are known in advance.

Trigger can also be non-deterministic and fired in reaction to event locally
or externally generated. For performance reasons, we suggest that these events
should have the user data unique ID that is used to select the corresponding
policy and in turn related obligation. Beside this mandatory information these
external triggers may accompany additional parameters depending on their type.
Non-deterministic trigger is defined by a tuple 〈ty, d〉 where ty ∈ T , where T
denotes the set of all existing trigger types in the system and d is the deadline
duration as defined before. Parameters for trigger are not specified within the
policy but the triggers when fired will accompany them.

5

Application Condition Application condition expressions are boolean equa-
tions defining whether a rule is applicable. When an event occurs (e.g. delete
resource r), the system takes into account any obligation 〈s, a, ξ, c, e〉 having trig-
gers ξ registered to such events. If the condition c of an obligation is evaluated
to true, the obligation’s action is executed.

Depending on the result of the action, the obligation will be considered as
fulfilled or violated. If the obligation is non-repeating, it will disappear from the
system after fulfillment or violation.

The condition expression is expressed as Sum of Products. We have shown
the grammar of condition expression (cexpr) in EBNF form below.

cexpr = {pterm};
pterm = {cond|cexpr};
cond = name, {parameter};

parameter = function|variable|literal;
function = returntype, name, {parameter};
variable = name, type

literal = {a...z|A...Z|0...9}

For example, in order to have temporal constraints on the obligation rule we
can define a time frame function which can then be used in policies. An example
condition expression has been shown below

cexpr = (Timeframe(ts, te) ∧ UsageLimit(i)) ∨
(System.State == green)

Timeframe and UsageLimit are the function/condition names. Conditions are
subset of functions which always have the boolean return type and thus can be
used in the product terms (pterm). The second product term specifies that if
the environment variable System.State is green then condition is applicable. The
environment variables are specified in the variable repository, variable repository
is being discussed in Section 4, and values are varied by the administrator. The
two product terms are OR-ed together.

Events Optionally obligation rules can have outward events which are generated
when a state of the rule is changed. Event of one obligation rule can be a trigger
for another rule within the same policy. Through this design we implement the
notion of cascaded obligations. Formally, e ∈ E where E denotes the set of
existing events.

3.1 Obligation Policy

Obligation policy is a set of one or more well defined obligation rules which are
consistent as a whole. Formally

ρ = {o : o ∈ O} ∧ |ρ| > 0

6

3.2 Inconsistencies

It is of prime importance that the written policy must be consistent. Inconsis-
tencies like self contradiction, infinite cascading including cyclic dependencies
etc must be absent from a policy.

Let o1 = 〈s1, a1, ξ1, c1, e1〉 and o2 = 〈s2, a2, ξ2, c2, e2〉 with o1, o2 ∈ ρ be two
obligations, where ρ is an obligation policy as defined before. We use the operator
./ to represent semantic contradiction between two entities. This is symmetric,
non-reflexive and non-transitive relation.

An obligation policy ρ is inconsistent if one of the following conditions is
true:

1. ρ has an obligation rule which is inconsistent, i.e. ∃o ∈ ρ : o is inconsistent .
2. ρ contains two semantically contradicting obligation rules, i.e. ∃oi, oj ∈ ρ :
oi ./ oj .

The first case arises when any rule within ρ is not well written, contains
actions or conditions whose processing plugins are not present within the system.
Policies must be validated at the writing time before being deployed in the
templates repository.

The second case occurs when two rules, having the same subject and overlap-
ping conditions, are contradicting each other because of contradicting actions.
If the condition are not overlapping then it is not necessarily a consistency er-
ror. We define function IsConditionOverlap(c1, c2) ∈ {true, false, undefined}
which establish whether the two rules could become active within the same time
frame in future. If they do then they may be triggered both at the same time
and because of the contradiction it would be impossible to execute both actions.
During action plugin design, we define explicitly which actions are contradict-
ing others within the system. This meta information aid policy writers to write
consistent policies.

If a1 ./ a2 ∧ s1 = s2 ∧ IsConditionOverlap(c1, c2) = true⇒ o1 ./ o2

When it is undecidable to establish the condition overlap relation then we
can only raise a warning to the policy writer. We could take undefined as a
consistency error but that will reduce the expressiveness of the language.

If a1 ./ a2 ∧ s1 = s2 ∧ IsConditionOverlap(c1, c2) = undefined

⇒ o1 ./ o2 is undefined

Otherwise, IsConditionOverlap returns false which ensures that the two rules,
having contradicting actions, would be active in a separate time frames and it is
safe to have them within the policy. There is also a possibility of having action
precedence with some actions which cannot be repeated e.g. Delete User Data
which is non-repeatable action as once the data is deleted then it cannot be
deleted again. Similarly, after the deletion of data the existence of policy itself,
attached to deleted data, may vanish so the obligation rules which are supposed

7

to be executed after delete action may become redundant or non-reachable. The
current implementation does not yet target such complex cases.

Infinite cascading of rules because of the presence of events which can trigger
other rules within the same policy is also a problem. It must be ensured that
infinite cascading of rules must not happen and cycles are identified at policy
writing time.

3.3 Aspects of Obligations

Obligation rules could be subjected to certain generic and temporal conditions
which are prerequisite to obligation rule fulfillment. This key aspect is addressed
by having application condition construct in our proposed obligation rule. Con-
ditions could even be stateful for instance take the statement subject X commits
to Send Account Statement three times a year where the state of the condition
should be tracked to establish the rule applicability.

In case of temporal conditions the time frame in which the rule would be
active is specified explicitly which makes the rule as time bounded. Alterna-
tively, we can have only non-temporal conditions but their fulfillment is non
deterministic. In the absence of temporal conditions the obligation rule can be
time unbounded.

Cyclic or repeating obligations are required to be fulfilled multiple times.
This aspect has been incorporated by allowing multiple triggers to be defined
for a single obligation rule.

There are some aspects which are not addressed until now but worth mentio-
niong here. We consider that obligation subject could be more complex than just
an identity. We could have an individual entity who has the full responsibility
of fulfilling obligations or collection of entities forming a logical subject and the
responsibility division to fulfill the obligation in turn could be complex like All,
one out of all etc. In real world we could even have one entity committing some-
thing on behalf of another based on some underlying reason e.g Authority,Mutual
agreement etc. Observability or monitoring of obligation fulfillment is another
important aspect as also being discussed in [5]. We do consider that monitoring
of obligations is an attribute of the rule as well as dependent on the reference
monitor scope whether deployed within the same trust domain or outside. In the
current work we have not addressed these problems.

4 Architecture for Enforcement

We have designed and implemented an enforcement architecture for the obliga-
tions which are expressed through our proposed language. The core requirements
of the architecture were to ensure the enforcement of obligations, to enable cus-
tomized actions, to facilitate integration with existing systems and to support
external systems. The detailed obligation framework architecture is illustrated
in Figure 1.

8

External System/Infrastructure

Web Servers

Application Servers

Other Servers

Repositories

Policy/Rules

Repository

Scheduler

Future Event Set

OS Timer/

Clock

Send Triggers

Send and Receive

events from external

systems

Event Engine
Event Plugins and Factory to

receiver and send events

Schedule

deterministic

 Triggers

Send new Uncustomized

Policy
Customized Obligation

Policy (could be Sticky

Policy)

Prime-

DHP
SecPal

Custom

SOAP
XACML Other..

Policy Extractor

SOAP Message with Embedded

Obligation Policy

Send Extracted

 Policy

Obligation Engine

Condition

Evaluator

Runtime
Evaluate

Condition

Action Invoker with

multiple plugins

Execute Action

Environment

variables

Generic

Components

Static Policy

Templates

Policy Generation

Fetch Rule

Send Load to

Obligation Engine

for Processing

SQL

Server Oracle
SQL

Server

SQL

Server Oracle
Action 2

Action n

SQL

Server Oracle File

SQL

Server Execute

action

Execute

action

Gray Lines show read only

interface to the DB.

Obligation Runtime

Policy

Generator

Global

Functions

SQL Server Oracle Policy

Storage

Plugins

Policy

Processor

Fig. 1. Obligation Framework Architecture

The key feature of the framework is its flexibility which is achieved through
the plugin based design allowing easy integration of new types of obligations
and new types of external systems. The framework uses the available plugins to
execute different tasks. We assume that the framework is authorized to perform
all the obligation actions on the external entities. This is generally achieved
by deploying obligation framework and external systems (e.g. databases, email
servers) within one single trust domain. As shown in Figure 1, the architecture is
separated into three main parts, namely Policy generation, Generic components,
and Obligation Runtime.

4.1 Policy Generation Components

They are used mainly for policy creation. The underlying idea is to store Obli-
gation policies in the form of policy templates with annotated fields. Once the

9

request is received for a new policy, to be sent to the user, one of those templates
is extracted from the repository based on the context of the request and is sent
back to the user.

4.2 Generic Components

They are also an optional set of components used to store environmental vari-
ables, global functions etc.

4.3 Obligation Runtime Components

This is the core set of components within the architecture. We now discuss each
of the subcomponents of the obligation runtime briefly.

Policy Extractor Plugins are used to extract the obligation expression from
the incoming message which could be in any format, as long as the required
translation/extraction plugin is present. If the obligation policy is embedded
within any other container message, the corresponding plugin parses the mes-
sage and forwards only the obligation policy part to the system. This enables
fulfillment of requirements 1, 2 and 3.

Policy Processor The policy is received by the policy processor either through
an external interface or via any of the policy extractor plugins. It processes
the policy, check inconsistencies, and schedule deterministic triggers. The ini-
tial transaction interplay with the user ends here and the system returns the
system wide unique Policy ID to the caller which forwards it to the user.

The caller in turn stores PII (Personally Idenfiable Information) somewhere
within the infrastructure of subject along with the policy reference. Both data
and policy are stored separately but remain connected through cross-references.
Thus, the enforcement framework only manages policy templates, policies con-
ntected to some data under the subject ownership and references to that data.
Data itself is being managed by systems external to our obligation framework,
but within the service provider’s trust domain.

Scheduler It is used to initiate time based triggers which are scheduled by
other components of the runtime engine. The triggers are being in the form of
messages to the event engine. We call scheduled triggers as future event set.

Event Engine It is the central collection and distribution component. The ma-
jor goal to have a single point of event receiving and distribution is to ensure
integrity. All the external systems, scheduler and obligation engine communi-
cate to other components through the event engine. This component also keeps
track of the received and processed messages. Storing and retrieving these active
messages in case of system shut down or malfunction is also the responsibility

10

of this central component. It behaves mainly like a queuing component. This
design allows us to integrate our framework with existing systems and to en-
force preventive obligations which are fulfilled by inhibiting rather performing
an action which is our requirement 11.

Obligations Engine It is the main load processing component. It receive the
load/triggers from the event engine and process them. On receiving a new trig-
ger, it fetches the policy rules from the policy repository, evaluate conditional
statements, finds the respective action plugin and executes the action. After the
execution of actions, the obligation engine changes the state of obligation rule
and fires the outward events. If the action is executed successfully before the
deadline the rule is fulfilled otherwise violated.

The policies contain action with parameters attached to each obligation rule.
Each of these actions must match to an available action plugin within the obli-
gation engine. The parameters listed within the policy must also match to the
parameters required by the actions plugin. This enables fulfillment of require-
ments 5 and 6.

We propose two layered action plugin mechanism, in the obligation engine
component. The upper layer contains the plugins for specific actions e.g delete,
notify and the lower plugin layer contains the implementations for different ex-
ternal systems supporting a set of actions. For instance, delete operation can
operate on files or on data in a relational database. Notification to user could be
sent via e-mail, fax, or postal mail. Each obligation policy rule in our language
specifies a single action with a system-wide unique scope and name, which is
used to select appropriated plugin.

To ensure integrity, the action parameters must satisfy the required param-
eters for only one lower layer plugin. This design ensures the requirements 4, 6
and 7.

We kept our language independent of schema extensions so the new vocab-
ulary required for domain specific obligations is mainly added by implementing
the corresponding plugins each having unique scope and name which are then
used within the policy. This targets our requirement 8 for the enforcement plat-
form. Requirement 9 on trust model and 10 on transparency are not yet covered
and need additional work.

5 Comparison with State of the Art

Most of the available policy languages, like XACML [4,8], EPAL [9], Ponder [10],
Rei [11] and PRIME-DHP [1], provide either only a placeholder or very limited
obligation capability. Moreover these languages do not provide any concrete
model for obligation specification. XACML and EPAL support system obliga-
tions only, as no other subject can be expressed in their proposed language.
Ponder and Rei on the other hand do allow user obligations, however they do
not provide a placeholder explicitly for the specification of temporal constraints

11

and they do not support pre-obligations, conditional obligations, and repeating
obligations.

PRIME-DHP proposed a new type of policy language which expresses poli-
cies as a collection of data handling rules which are defined through a tuple of
recipient, action, purpose and conditions. Each rule specifies who can use data,
for what purposes and which action can be performed on the data. The idea is
inspiring and contributed a new direction to view the problem. The language
structure is flat which limits its expressiveness. PRIME-DHP itself also does not
provide any concrete obligation model.

Besides the policy languages, we observed publications on expression, en-
forcement and formalization of obligations. In the next paragraphs, we collected
prior art which is directly related to our approach and point out the key differ-
ences to our work.

Mont Casassa et al. [2] proposed the idea of having parametric obligation
policies with actions and events having variable parameters. This work was done
in conjunction with the PRIME-DHP to support obligations. It is by far the
closest work to ours. They propose a formal obligation model and provide the
framework to enforce obligations. However, they do not offer the notion of pre-
ventive obligations (negative obligations) and multiple subjects. As opposed to
their policy expressions, we propose a schema which is not modified when do-
main specific obligations, including new actions, events and triggers, are added.
They took the notion of On violation actions within a policy rule to express
actions which are taken in case of obligation violation. We cover this aspect by
defining that obligations rules contain events which can be used to trigger an-
other rule within the same policy to invoke a compensatory action. Since this
event-based approach allows cascading of rules, we need to ensure the absence
of loops, which remains an open issue of our work. Unlike [2], we also do not
allow multiple action per rule because of the system integrity problem which
arises from the fact that we cannot map fulfillment of a subset of actions in any
policy rule as complete fulfillment and we achieve the same behavior through
rule cascading without ambiguity.

Irwin et al. [3] proposed a formal model for obligations and define secure
states of a system in the presence of obligations. Furthermore, they focused on
evaluating the complexity of checking whether a state is secure. However, the pro-
posed obligation model is very restricted and does not support pre-obligations or
provisions, repeating and conditional obligations which are required in different
domains and scenarios. They addressed the problem of verification of obliga-
tion enforcement while we focus on the expression of a wide range of scenarios,
supporting all of the above types of obligations. So the two research efforts are
targeting different problems.

Pretschner et al. [5, 12, 13] worked in the area of distributed usage control.
In [5], they used distributed temporal logics to define a formal model for data
protection policies. They differentiated provisional and obligation formulas us-
ing temporal operators. Provisions are expressed as formulas which do not con-
tain any future time temporal operators and obligation are formulas having no

12

past time temporal operators. They also addressed the problem of observability
of obligations which implies the existence of evidence/proof that the reference
monitor is informed about the fulfillment of obligations. Possible ways of trans-
forming non-observable obligations into observable counterparts have also been
discussed. We also consider temporal constraints as an important part of obliga-
tion statement. However, we deem observability as an attribute of the reference
monitor and not an attribute of the obligation rule. It depends on the scope
of the monitor. The scope could be within the system, within the same trust
domain but outside the system, or even sitting outside the trust domain, to ob-
serve fulfillment and violations. We currently have not addressed this problem
of observability. In [12] they have proposed an obligation specification language
(OSL) for usage control and presented the translation schemes between OSL
and rights expressions languages, e.g. XrML, so the OSL expression could be
enforced using DRM enforcement mechanisms. We have tried to fill that gap by
implementing the enforcement platform for enforcing obligation policies without
translation. In [13], the authors have addressed the scenario of policy evolution
when the user data crosses multiple trust domains and the sticky policy evolves.
Currently, we are not focusing on evolution of obligation policy, but it could
likely be one of the future extensions of our work where we plan to address the
interaction of obligation frameworks at multiple services which is complementary
to what is discussed in [13].

Katt et al. [14] proposed an extended usage control (UCON) model with
obligations and gave a prototype architecture. They have classified obligations
in two dimension a) system or subject performed and b) controllable or non-
controllable where the objects in the obligation would be either controllable or
not. Controllable objects are those that are within a target systems domain, while
non-controllable objects are outside the systems domain. The enforcement check
would not be applied for system-controllable obligations where they assume that
since system is a trusted entity so there is no need to check for the fulfillment.
The model again misses the conditional obligations.

Cholvy et al. [15] studied the relationship between collective and individual
obligations. As opposed to individual obligations which are rather simple as
the whole responsibility lies on the subject, collective obligations are targeted
toward a group of entities and each member may or may not be responsible to
fulfill those obligations. They investigated the problem of translating collective
obligations into individual obligations. We also consider that the subject of any
obligation rule is a complex entity in itself like individual or group, self directed
or third party. Our current implementation does not support this but could be
extended to include such scenarios.

Ni et al. [16] proposed a concrete obligation model which is an extension of
P-RBAC [17]. They investigated a different problem of the undesirable interac-
tions between permissions and obligations. The subject is required to perform
an obligation but does not have the permissions to do so, or permission condi-
tions are inconsistent with the obligation conditions. They have also proposed
two algorithms, one for minimizing invalid permissions and another for com-

13

paring the dominance of two obligations. Dominance relation is the relationship
between two obligations which implies that fulfillment of one obligation would
cover the fulfillment of other which is analogous to set containment. We believe
that the results from this work could also be applied on our proposed framework
for optimization purposes, but we see that this has strong implications on the
consistency check of policies.

Gama et al. [18] presented an obligation policy platform named Heimdall
which supports the definition and enforcement as a middleware platform residing
below the runtime system layer (JVM, .NET CLR) and enforcing obligations
independent of application. Opposed to that, we present an obligation framework
as an application layer platform in a distributed service-oriented environment
which could be used as an standalone business application to cater for user
privacy needs. We believe that it is not necessary to have the obligation engine,
which is an important infrastructure component to ensure compliant business
processes, as part of the middleware. Moreover our service-oriented approach
supports interoperability in an heterogeneous system environment.

The work present in this paper incorporates some of the enlightening prior art
and extends it towards more expressiveness, extendability, and interoperability.
However, we think that some authors addressed different problems, and it would
be worthwhile to further combine their results with our approach.

6 Conclusion and Future Work

This position paper described challenges and requirements to properly address
obligations. We presented a general language for obligations which can be used
with today’s access control and data handling policy languages. We started with
reasoning on the requirements of an abstract yet expressive obligation language
and presented eleven requirements for design. Next we presented an abstract
notion of an obligation language fulfilling those requirements. We described im-
portant design aspects and formal structure of the obligation language. The lan-
guage offers basic actions, triggers and terms which are rich enough to cover a
broad range of scenarios. In addition the language can be extended with domain
specific actions, terms and events to adapt it to specific application domains. We
verified our work with an implementation of an obligation framework which fea-
tures both the requirements and the proposed language design. This allowed us
to make practical comments on the implementation aspects. Finally we showed
how our work relates to the state of the art.

Future work will be aligned with challenges described in the introduction
of this paper. First we need mechanisms to help authors of privacy policies
to check whether a policy can be enforced. This is especially important since
violation of obligations impacts reputation and can have legal implications. Next,
we need to look at the protocols and matching mechanisms between users (with
privacy preferences) and service providers (with privacy policies). Finally, we
will also consider distributed services where collected PII is subsequently shared
with third parties. From an obligation perspective, the key interest is to look

14

at distributed yet coherent enforcement. We will pursue this work as part of
PrimeLife2 research project.

References

1. Ardagna, C.A., Cremonini, M., De Capitani di Vimercati, S., Samarati, P.: A
privacy-aware access control system. J. Comput. Secur. 16(4) (2008) 369–397

2. Casassa, M., Beato, F.: On parametric obligation policies: Enabling privacy-aware
information lifecycle management in enterprises. Policies for Distributed Systems
and Networks, 2007. POLICY ’07. Eighth IEEE International Workshop on (June
2007) 51–55

3. Irwin, K., Yu, T., Winsborough, W.H.: On the modeling and analysis of obliga-
tions. In: CCS ’06: Proceedings of the 13th ACM conference on Computer and
communications security, New York, NY, USA, ACM (2006) 134–143

4. Rissanen, E.: OASIS eXtensible Access Control Markup Language (XACML) Ver-
sion 3.0. OASIS working draft 10, OASIS (March 2009)

5. Manuel Hilty, D.B., Pretschner, A.: On obligations. Computer Security ESORICS
2005 (2005) 98–117

6. Cranor, L., Langheinrich, M., Marchiori, M., Reagle, J.: The platform for privacy
preferences 1.0 (p3p1.0) specification. W3C Recommendation (April 2002)

7. : Trusted Computing Platform Alliance (TCPA). Main Specification Version 1.1b,
Trusted Computing Group, Inc. (February 22 2002)

8. Moses, T.: OASIS eXtensible Access Control Markup Language (XACML) Version
2.0. OASIS Standard oasis-access control-xacml-2.0-core-spec-os, OASIS (Febru-
ary 2005)

9. : Enterprise privacy authorization language (epal 1.2) at
http://www.w3.org/submission/2003/subm-epal-20031110/

10. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The ponder policy specification
language. In: POLICY ’01: Proceedings of the International Workshop on Policies
for Distributed Systems and Networks, London, UK, Springer-Verlag (2001) 18–38

11. Kagal, L., Finin, T., Joshi, A.: A policy language for a pervasive computing envi-
ronment. In: POLICY ’03: Proceedings of the 4th IEEE International Workshop
on Policies for Distributed Systems and Networks, Washington, DC, USA, IEEE
Computer Society (2003) 63

12. Hilty, M., Pretschner, A., Basin, D., Schaefer, C., Walter, T.: A policy language
for distributed usage control. In Biskup, J., Lopez, J., eds.: 12th European Sympo-
sium on Research in Computer Security (ESORICS 2007). Volume 4734 of LNCS.,
Springer-Verlag (2007) 531–546

13. Pretschner, A., Schütz, F., Schaefer, C., Walter, T.: Policy evolution in distributed
usage control. In: 4th Intl. Workshop on Security and Trust Management. (06 2008)

2 The research leading to the results presented in this paper has received funding
from the European Community’s Seventh Framework Programme (FP7/2007-2013)
for PrimeLife project. The information in this document is provided “as is” and no
guarantee or warranty is given that the information is fit for any particular purpose.
The PrimeLife consortium members shall have no liability for damages of any kind
including without limitation direct, special, indirect, or consequential damages that
may result from the use of these materials subject to any liability which is mandatory
due to applicable law.

15

14. Katt, B., Zhang, X., Breu, R., Hafner, M., Seifert, J.P.: A general obligation
model and continuity: enhanced policy enforcement engine for usage control. In:
SACMAT ’08: Proceedings of the 13th ACM symposium on Access control models
and technologies, New York, NY, USA, ACM (2008) 123–132

15. Cholvy, L., Garion, C.: Deriving individual obligations from collective obliga-
tions. In: AAMAS ’03: Proceedings of the second international joint conference on
Autonomous agents and multiagent systems, New York, NY, USA, ACM (2003)
962–963

16. Ni, Q., Bertino, E., Lobo, J.: An obligation model bridging access control policies
and privacy policies. In: SACMAT ’08: Proceedings of the 13th ACM symposium
on Access control models and technologies, New York, NY, USA, ACM (2008)
133–142

17. Ni, Q., Trombetta, A., Bertino, E., Lobo, J.: Privacy-aware role based access
control. In: SACMAT ’07: Proceedings of the 12th ACM symposium on Access
control models and technologies, New York, NY, USA, ACM (2007) 41–50

18. Gama, P., Ferreira, P.: Obligation policies: An enforcement platform. In: POLICY
’05: Proceedings of the Sixth IEEE International Workshop on Policies for Dis-
tributed Systems and Networks, Washington, DC, USA, IEEE Computer Society
(2005) 203–212

