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Abstract. Self-organization, whereby through purely local interactions,
global order and structure emerge, is studied broadly across many fields of
science, economics, and engineering. We review several existing methods
and modeling techniques used to understand self-organization in a general
manner. We then present implementation concepts and case studies for
applying these principles for the design and deployment of robust self-
organizing networked systems.

1 Introduction

The term self-organization was introduced by Ashby in the 1940s [1]. He referred
to pattern formation occurring by the cooperative behavior of individual entities.
Such formation can be described by entities achieving their structure without any
external influence. The ideas behind self-organization were subsequently further
studied and developed by a number of cyberneticians (e.g., von Foerster, Pask,
Beer, and Wiener), chemists (e.g., Prigogine), and physicists (e.g., Haken). In
the 1980s and 90s, the field was further fertilized by some applied mathematics
disciplines, such as non-linear dynamics, chaos theory, and complex networks.
Although there is still no commonly accepted exact definition of a self-organizing
system that holds across several scientific disciplines, we refer to it as a set of
entities that achieves a global system behavior via local interactions between its
entities without centralized control [2].

Phenomena of self-organization can be found in many disciplines. A well-
known example from nature is the flocking behavior in a school of fish. It is
likely that there is no “leader fish,” but each individual fish has knowledge only
about its neighbors [3]. Despite (or probably because of) this localized and de-
centralized operation, the difficult task of forming and maintaining a scalable and
highly adaptive shoal can be achieved.
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With the increasing complexity in technology and its applications (more and
more entities are interconnected to form a networked system), the notion of self-
organization has also become an interesting paradigm for solving technical prob-
lems (see, e.g., references in [4]). In order to design a self-organizing technical
system, a set of modeling approaches and design methods are needed. The goal
of this paper is to give a survey of building blocks that can be used for modeling
and design of self-organization, with a special focus on information and commu-
nications and traffic systems.

The paper is structured as follows: In Section 2, we take a closer look at spe-
cific modeling issues for self-organizing systems. Section 3 presents an overview
on different established models for self-organizing systems. Section 4 reviews dif-
ferent methods for designing a self-organizing system with an intended technical
effect. Section 5 give references to some case studies with respect to the concepts
described in Sections 3 and 4. Finally, Section 6 concludes the paper.

2 Two Perspectives on Self-Organizing Systems

A self-organizing system (SOS) consists of a set of entities that interact with
each other locally to obtain a global system behavior. The global system behavior
arises out of many simple interactions. It is an emergent property, i.e., it cannot
be explained by summation of the local interactions. A self-organizing system can
thus be viewed from two perspectives: the microscopic perspective describes the
entities and their behavior; the macroscopic perspective describes the (emergent)
behavior of the overall system.

An example for these two perspectives and their interrelation can be found
in the “predator-prey system” as described by Lotka and Volterra [5]. This
biologically-inspired model contains two types of animals, typically named “rab-
bits” (the prey) and “foxes” (the predators). It obeys simple microscopic rules:

– Rabbits reproduce at a given birth rate ε1.
– Rabbits die if caught by foxes, with rate for such a death event given by γ1.
– Foxes reproduce at a rate γ2 proportional to the number of caught rabbits.
– Foxes die according to a given death rate ε2.

These rules can be described in an aggregated form by the differential equations

dN1

dt
= N1(ε1 − γ1N2),

dN2

dt
= −N2(ε2 − γ2N1) ,

where N1 and N2 is the number of rabbits or foxes, respectively. The rate of
interaction between both populations is a function of the product N1N2.

When examining the behavior of this system over time, we observe emergent
phenomena on the macroscopic level, such as periodic oscillations of N1 and N2.
Unlike many oscillations in nature which can be described by trigonometric func-
tions, the solution of the Lotka-Volterra equations do not have a simple expression
in terms of trigonometric functions (see Fig. 1).

To describe the overall system behavior from the macroscopic perspective,
Lotka and Volterra found three laws:



Fig. 1. Simulation with 4 different initial conditions of Lotka-Volterra system with pa-
rameters ε1 = 1, γ1 = 0.1, ε2 = 1, γ2 = 0.05

1. The population sizes of rabbits and foxes oscillate with a particular phase
offset. Period lengths depend on the initial population and model parameters.

2. The averages of the two population sizes converge to a value that is determined
by the model parameters and is independent of initial conditions.

3. If both populations are decimated proportionally to their size, the rabbit
population will recover fast and will exceed their previous population.

These laws describe properties of the overall system, which cannot be immediately
seen from the four microscopic rules.

The Lotka-Volterra model enables us to derive both perspectives from the
differential equations. For more complex (more realistic) systems, however, the
direct transformation between microscopic and macroscopic perspectives might
not be possible. In this case, the macroscopic model could be built by (statis-
tical) analysis of the overall behavior. This requires appropriate statistical tools
to analyze emergent structures and behavior [6]. Such a model, although being
potentially very useful in some cases, is unlikely to cover all possible aspects of
the system behavior. An example is the global economy — although tremendous
research efforts are put into understanding both its microscopic and macroscopic
rules, the system is far from being exactly predictable.

To gain a deep understanding of a self-organizing system or to design a new
system, it is beneficial to consider both the microscopic and macroscopic perspec-
tive. A microscopic perspective confers the advantage of providing an exact model,
which directly supports implementation of the entities. However, it provides no
mechanism for measuring or understanding emergent properties. A macroscopic
perspective, in contrast, covers emergent behavior and a goal-oriented view. It
is less exact, as it treats the system as a “black box.” This obscures underlying
dynamics and makes it difficult to verify the applicability of the model to a given
system.



3 Models for Self-Organizing Systems

Before building and deploying an engineered SOS, it can be beneficial to develop
a model of the system which can be analyzed mathematically or explored through
computer simulation. This is especially important given that SOS typically dis-
play emergent behaviors which, by definition, can not be anticipated in advance.
Models provide a virtual laboratory for exploring system design and function and
give insights into the types of emergent behaviors that might be expected and the
anticipated workings of real systems.

3.1 Differential Equations

Perhaps the first examples of modeling SOS reported in the literature are reaction-
diffusion equations which generate patterns similar to those observed in Rayleigh-
Bénard convection, viscous fingering, spiral waves in chemical reactions and a
range of additional structures such as stripes and tilings [7, 8]. Many of these pat-
terns are also observed in biological systems, with differential equations providing
models of organism growth and differentiation [7, 9]. Ref [8] provides a compre-
hensive review of pattern formation as modeled by reaction-diffusion equations.
Most recently, systems of differential equations have been used to model the emer-
gence of synchronization in systems of coupled oscillators ranging from fireflies,
to neurons, to Josephson junctions [8, 10, 11]. The Lotka-Volterra model discussed
above is another prominent example of this approach.

Despite the broad range of applicability, this approach is thus far limited to
describing pattern formation, oscillations and other simple collective phenomena.
It does not allow much flexibility for diversity of components and assumes a
uniform spatial interaction, neglecting more realistic types of connectivity in real-
world systems which are often much better described by networks than uniform
spatial fields.

3.2 Cellular Automata

Cellular automata models (CAs) are a simulation method for studying SOS which
assume the world is a discrete grid (a lattice) and each site on the grid can be
found in one of a set of possible discrete states. CAs have been successfully used
to model a range of real physical systems from predator-prey systems, to chemical
spiral waves, to hydrodynamics [12–15].

A highly desirable aspect of CAs, absent from differential equations, is that
they allow for locality. In other words, sites on the grid interact directly only with
neighboring sites, thus, consistent with physical law, there is no “action at a dis-
tance” and all signals must propagate along a path of connected neighbors. (Yet,
similar to differential equations, this requirement of uniform spatial connectivity
does not permit irregular networked patterns of interaction.) Another highly de-
sirable quality of CAs is that they readily exhibit interesting behaviors such as
forming a range of patterns similar to those observed with differential equations



and also far more complex dynamics such as moving patterns (“gliders”) in Con-
way’s Game of Life [16]. Many CAs are computationally universal, i. e., in theory
CAs can be used to implement any computation. A fundamental requirement nec-
essary for many (if not most) CAs to exhibit interesting behaviors is synchronous
updating (all grid sites update simultaneously). Though not always realistic, as
discussed in Sec. 5.1, there are simple algorithms which do allow collections of
objects to synchronize, so it may be possible to engineer a system to fit the CA
paradigm.

3.3 Agent-based Models

Agent-based models are another modeling approach and a natural starting point
if components in a system can vary dramatically from one another and display a
range of behaviors and strategies (especially decision making). In contrast, CAs
assume every site in the grid obeys the same rules. Furthermore, agent based
models do not need to assume an underlying topology, specifying or restricting
which components can interact; agents can come together and interact with one
another in complex and dynamic ways. Such approaches are clearly necessary if,
as in economics, we wish to model interactions amongst humans with complex
decision making abilities. Agent based approaches can also be quite useful even if
the agents are simple, such as capturing swarm behaviors [3].

Agent based approaches are extremely flexible, modeling the interactions of
a collection of autonomous agents. Thus, unlike CAs and differential equations,
they can model phenomena in social systems and agent based approaches lend
themselves readily to incorporating game theoretic policies [17]. Many software
platforms and techniques exist for building agent based models and Refs. [18]
and [19] provide useful reviews.

A major drawback to agent based modeling is the lack of rigor. Due to the
complexity of the model specifications (behaviors of agents, patterns of interac-
tion) it is difficult to assess the robustness of observed phenomena to changes in
the specifications and the accuracy by which the model describes real systems.

4 Design Methods for Self-Organizing Systems

The design of self-organizing systems differs from typical engineering approaches
in the way that the system is rather built bottom-up than top down. At an
early stage of development, it is necessary to tinker with the interactions between
the individual system entities. In contrast, traditional systems are typically built
starting with the overall system service and then approach the micro level only
after several more and more fine-grained system models. Therefore, most standard
design approaches do not fit well for the design of self-organizing systems. In the
following, we discuss several design approaches that have been used or could be
used for this purpose.



4.1 Analytical Approach

If the chosen model is abstract and simple enough, the settings for the desired
global properties could be derived by an analytical solution. For example, if a
system S fed with a configuration C gives the emergent behavior B, the task is
to find the inverted function, i.e.,

S(C) = B ⇒ C = S−1(B)

Unfortunately, even for moderately complex systems this is usually not feasible
or would require a high effort for solving a mathematical problem which might
already be represented by an less realistic abstraction from the actual problem.
E. g., for the Lotka-Volterra example there exists is no complete analytical solution
for the differential equation system, i.e., the equations have to be reduced or solved
numerically.

An analytical approach may, however, help to discover certain aspects of the
system. This might be achieved e.g. by assuming certain conditions or parameters.
Thus it can help in the initial system design phase to predict certain aspects and
in the final phase by verifying system aspects.

4.2 Applying a Reference Design

There exist many examples of self-organization in different domains, such as bi-
ology, physics, mathematics, economics. In order to find a working approach for
achieving a particular behavior, a reference design from one of these disciplines can
provide a major step towards a successful solution. There are two main paradigms
for adopting a reference design: top-down and bottom-up.

In the top-down approach, a technical problem is tackled by looking for ex-
amples solving an equivalent problem. The found solution and its principles are
then analyzed and re-built in a technical application. Examples of top-down ap-
proaches are (a) the design of aeroplane wings by observing the gliding flight of
birds and (b) the design of turbulence-reducing winglets by analyzing the wingtips
of birds [20].

In the bottom-up (or indirect) approach, the working principle of the system
is first abstracted from its natural context. This step is done in a basic research
effort that is not yet targeted at the specific application. Afterward, the results
are used in particular technical applications. Thus, the indirect approach could
also be called a “literature-inspired approach”. Examples include (a) the concept
of artificial neural networks and (b) the concept of ant foraging behavior being
applied to mesh network packet routing [21].

4.3 Trial and Error

Another approach is to explore the effect of different interaction rules at the
microscopic level on the global system behavior using a trial-and-error method.

The simplest trial-and-error method would be a Monte-Carlo method, where
random configurations are created and tested until the global system shows the



intended behavior. Due to the typically high-dimensional search space, however,
randomized trial-and-error approaches are very unlikely to succeed within an ac-
ceptable time frame.

Alternatively, the trials can be used to learn about the causality of particular
configurations and the global system behavior. Thus, after a reasonable number
of test configurations, the tester might be able to apply his/her understanding of
the emergent processes to find a local rule set with a desirable configuration.

An auxiliary concept to understand the causality between local interactions
and global system behavior is introduced by Gershenson [22] as the the notion
of friction. Friction is a property of interaction between two entities as well as a
property of the overall system. This latter friction is to be minimized. By identify-
ing and analyzing points of friction, an engineer can change the local rules towards
better system performance. However, this is not straightforward: in several cases
a higher friction for a particular entity is beneficial for the overall system.

Additionally, emergent behavior is often counterintuitive to what is expected
by most people. Resnick [23] describes a simple simulation of a self-organizing
slime mold. Several experts were asked to predict the influence of a specific pa-
rameter change on the system. The answer was binary, i. e., there was a 50%
random change of guessing the correct answer. Nevertheless, a significant major-
ity of people, including experts on complex and self-organizing systems, guessed
the wrong answer.

4.4 Evolutionary Algorithms

Conventional search algorithms can be applied to search for an optimal or suf-
ficiently good set of local rules. However, the search space is typically too large
for an exhaustive search. For these cases, evolutionary algorithms and heuristic
search algorithms can be a choice. Examples include genetic algorithms, simulated
annealing, swarm-based optimization, and the Sintflut algorithm.

Using evolutionary algorithms requires a “testbed” that allows extensive and
safe testing at low cost. Usually, such a testbed consists of a simulation of the
target system with a model of the environment and the system itself. However,
a simulation always implements an abstraction of the real environment, so after
the experiments, a real-world validation is required to create trust in the derived
solution.

The most prominent example for evolutionary algorithms are genetic algo-
rithms. A genetic algorithm starts with an initial population of candidate solu-
tions for a multidimensional optimization problem. It wishes to quickly find a
near-optimal solution. At each generation, the candidates are randomly mutated
or combined. The candidates with the best “fitness” establish the population of
the next generation. An example where a genetic algorithm is used to design a
self-organizing technical system is given in [24]. It was used to find the inter-
action behavior for a distributed robot soccer team. The behavior was modeled
as an artificial neural network to support an implementation of mutation and
combination.



4.5 Markov Models and Finite State Machines

Auer, Wüchner and De Meer propose a method to derive local interaction rules by
learning from a reference solution [6]. The reference solution can be any algorithm
that performs well for the problem. For example, the reference solution might be
built as an omniscient system in a simulation. In many cases, it might not be
possible to use this solution for a real application because the perfect information
cannot be provided to the algorithm or the algorithm might be too complex to be
implemented with reasonable response times. However, the omniscient algorithm
can be used as an example for teaching its behavior to distributed entities that
use only local information and interactions.

The behavior of the reference agent is analyzed using Markovian analysis and
then rebuilt in a Finite State Machine (FSM). Thus, the state machine mimics
the statistical behavior of the reference agent. The approach relies thus on the
possibility that a suitable reference solution is available and that the behavior can
be successfully used by an agent with local perception.

In [6], the application of this method is shown by designing an agent for the
game theoretic problem “repeated prisoner’s dilemma” [25]. In the design process,
an agent having perfect knowledge (including the opponent’s decision) is created.
Then the behavior of this “perfect” agent is analyzed using Causal State Splitting
Reconstruction [26], i. e., a method for building recursive hidden Markov models
from discrete-valued time series.

The results are then implemented as FSM controling the behavior of a normal
(non-omniscient) agent. The resulting behavior was similar to the well-known tit-
for-tat strategy including forgiveness. Tit-for-tat with forgiveness is known to be
a highly effective strategy in the repeated prisoner’s dilemma.

4.6 Combining the Approaches

The presented design approaches can also be combined. For example, the reference
design method may serve as a starting point, where the system designer applies
one of the other methods subsequently after choosing a reference model. Another
variant of a design process could involve a “bootstrapping” method, where ef-
forts to understand the effect of local interactions are combined with an analysis
of the global emergent behavior. Some effects of local rules could be predicted
by mathematical analysis of the interaction. For example, in physics, only the
gravitational system of two bodies is analytically solved. Still, the results can be
applied to understand the movement of more bodies in our solar system, as long
as some influences can be neglected. Statistical approaches such as Markov mod-
els or evolutionary algorithms can be a further step in the system design. In the
combined approach as depicted in Figure 2, insights from the microscopic level
are influencing and improving the design at the macroscopic level and vice versa.



Fig. 2. Combined design approach

5 Case Studies from Engineering

A nice feature of modeling approaches in self-organization is their simplicity at the
microscopic level. Simple local rules lead to global structure and function. From
an engineering perspective, we would like to apply these models to technical sys-
tems. This chapter will give some examples where models from self-organization
and complex systems have been successfully applied to information and commu-
nications technology research. It will also show that a direct applicability of the
theory of self-organization and complex systems is often not possible, but the
design of self-organizing functions in technology often requires us to modify and
extend the original schemes, taking into account some technological constraints
and requirements.

5.1 Wireless Communications: Application of Coupled Oscillators

The pulse-coupled oscillator (PCO) model for firefly synchronization [10] has been
employed in many fields of science and engineering. Prominent examples include
self-organizing algorithms for time synchronization in wireless systems [27], re-
source scheduling [28], reducing energy consumption in sensor networks [29], and
traffic light control systems [30].



The application of firefly synchronization to mobile and wireless systems re-
quires us to perform some modifications and extensions to the original scheme.
These changes are required, since the assumptions in [10] do not match with the
system constraints of radio communications. In other words, the modeling as-
sumptions in the original scheme are too simplistic compared to the modeling
assumptions typically used in wireless and mobile systems.

First, in general, we cannot neglect inherent delays of the system, includ-
ing propagation delays, decoding delays, and delays caused by signal processing.
These delays make the synchronization scheme unstable, as nodes might receive
“echos” of their own firing pulse. To regain stability, a refractory period can be in-
troduced during which nodes do not increase their phase function [31, 27]. Second,
wireless communication technologies do typically not allow us to send infinitely
short pulses over the air. This fact forces us to replace the infinitely short “firing
pulses” by finitely long “synchronization signals” (see e.g. [32, 33]). Third, the
wireless medium suffers from noise and attenuation, which must be taken into ac-
count for the design of a synchronization scheme as well [34]. Last but not least,
to minimize the use of radio resources, it would be beneficial to minimize the sig-
naling overhead, such that nodes only send synchronization words when needed
and not periodically as in the original scheme [35].

An approach for self-organized synchronization in wireless systems has been
recently developed by Tyrrell, Auer, and Bettstetter [35]. The scheme, called
Meshed Emergent Firefly Synchronization (MEMFIS), applies a synchronization
word that is common to all nodes in the network and is embedded into each
payload data packet. This word is then detected at the receiver using a correla-
tion unit. Starting from an unsynchronized network, synchronization emerges as
nodes transmit data packets randomly according to some arrival process. In this
way, the throughput of the network can increase gradually, e.g., from ALOHA to
Slotted ALOHA.

Another example, where firefly synchronization has been applied to informa-
tion and security technology is intrusion detection using sensor networks. One
approach has been developed in [36].

5.2 Vehicular Traffic: Application of Cellular Automata and
Agent-based Approaches

An interesting application of cellular automata, studied extensively in both the
physics and the engineering communities, is the modeling and analysis of urban ve-
hicular traffic [37–40]. Gershenson and Rosenblueth [41] apply a two-dimensional
model based on simple interaction roles. A street is modeled by a line of connected
cells. Each cell can have two states, being empty (0) or occupied by a car (1). The
interaction model defines that a car moves on to the next cell in its direction of
motion, if this cell is empty; otherwise the car waits. At an intersection, two streets
share a common cell. Depending on the state of the traffic lights, this cell operates
as a forwarding cell either to the right or downwards, while blocking the other di-
rection, respectively. In their work, Gershenson and Rosenblueth compare a traffic
light control algorithm based on a green-wave method and a self-organizing ap-



proach. While the green-wave method requires the cars to match a predefined
progression speed to show good throughput, the self-organizing approach shows
to be more flexible in adapting to different load situations.

Resnick [23] describes an agent-based traffic model that explains the forma-
tion of traffic jams without a centralized cause (such as accidents). Each agent
represents a car following a simple set of rules: it slows down if it detects a car
close ahead; it speeds up if it does not see a car ahead. In this model, a traffic jam
appears as a pattern moving in the opposite direction of the traffic flow. In con-
trast to cellular automata, the agent-based approach enables a more fine-grained
model of the driver’s action and decision process. For example, the model could
be extended by drivers that have a bad reaction time due to distractions (e.g.,
phone calls).

6 Conclusions

Several problems in technology and society can be better understood and solved by
modeling them as a self-organizing system. An engineer with the task of developing
such a self-organizing system faces the problem of modeling and designing the local
interactions which will achieve a desired global system behavior. In this paper, we
have reviewed several modeling and design approaches suitable in this domain.

Differential equations can model a range of simple collective behaviors, such as
pattern formation and the synchronization of coupled oscillators. E. g., the latter
are an extremely useful paradigm for modeling self-organizing phenomena; they
are often used to describe phenomena related to oscillation and synchronization
within a system. Cellular automata are time-discrete and space-discrete models
which are often used to display pattern formation phenomena or other phenomena
related to the location of the entities. Agent-based models can be applied to both
space-continuous and space-discrete phenomena. The are advantageous if entities
display a range of behaviors and strategies such as decision making.

The design of a self-organizing system is difficult due to its emergent proper-
ties. This paper made an attempt to propose some design approaches, namely the
analytic approach, working from a reference design, trial and error, evolutionary
algorithms, and a statistic approach based on Markov models. Each of these has
certain advantages and disadvantages, thus a combination of them can be useful
in the system design process.

Finally, the paper gave examples from communications and traffic engineering
where some of the presented models and design approaches have been successfully
employed.
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de México, 2009.




