
Journal “Computer Science – Research and Development”, manuscript No.
(will be inserted by the editor)

Meiko Jensen · Nils Gruschka · Ralph Herkenhöner

A Survey of Attacks on Web Services
Classification and Countermeasures

Preliminary Version

Abstract Being regarded as the new paradigm for In-
ternet communication, Web Services have introduced a
large number of new standards and technologies. Though
founding on decades of networking experience, Web Ser-
vices are not more resistant to security attacks than other
open network systems. Quite the opposite is true: Web
Services are exposed to attacks well-known from com-
mon Internet protocols and additionally to new kinds
of attacks targeting Web Services in particular. Along
with their severe impact, most of these attacks can be
performed with minimum effort from the attacker’s side.

This article gives a survey of vulnerabilities in the
context of Web Services. As a proof of the practical rel-
evance of the threats, exemplary attacks on widespread
Web Service implementations were performed. Further,
general countermeasures for prevention and mitigation
of such attacks are discussed.

Keywords Web Services · Security · Attacks · Denial
of Service · Flooding Attacks · XML · WS-Security

CR Subject Classification C.2 · C.4 · H.3.5 · K.6.5

M. Jensen
Horst Görtz Institute for IT-Security,
Ruhr University Bochum, Germany
Tel.: ++49-234-32-26796
Fax: ++49-234-32-14347
E-Mail: Meiko.Jensen@ruhr-uni-bochum.de

N. Gruschka
NEC Europe Ltd.
NEC Laboratories Europe, IT Research Division
St. Augustin, Germany
Tel.: ++49-2241-9252-30
Fax: ++49-2241-9252-99
E-Mail: gruschka@it.neclab.eu

R. Herkenhöner
Institute for IT-Security and Security Law
University Passau, Germany
Tel.: ++49-851-509-3026
Fax: ++49-851-509-3052
E-Mail: ralph.herkenhoener@uni-passau.de

This work was done while the authors were at the Department
for Computer Science, University of Kiel, Germany

1 Introduction

Web Services and Service-Oriented Architectures (SOAs)
are often considered to be among the most important
technological innovations of the last decade. Neverthe-
less, the benefits of these new approaches stand against
some serious flaws these new technologies bring along.
The most severe issues concern Web Service security [19].

The typical requirements for a secure system are in-
tegrity, confidentiality and availability. Any action tar-
geting at violation of one of these properties is called an
attack, the possibility for an attack is called a vulnerabi-
lity.

This article presents a list of security issues in the
domain of Web Services. The list does not claim to be
complete, it merely is a selection of the most impressive
attacks we examined during our research. As this rese-
arch focused on availability, most of the attacks belong
to the category of Denial-of-Service (DoS) attacks [22].

The severity of DoS attacks can be seen in daily news,
for example the Distributed Denial-of-Service (DDoS)
attacks on Estonian governmental and commercial web
sites in April/May 2007 [25]. These attacks were perfor-
med by botnets using network layer flooding techniques.
As we will show in this article, DoS attacks on Web Ser-
vices can be conducted with much less resource effort
than against non-Web-Service systems.

The attacks cover a wide range of aspects. Starting
with attacks on single Web Services without security
measures, we further present attacks on WS-Security-
enabled Web Services, and finally describe attacks on
Web Services used in Web Service compositions. Alt-
hough the latter are applicable for all types of Web Ser-
vice compositions, we have chosen WS-BPEL (or BPEL
for short) for attack demonstration, as it tends to become
the leading Web Service composition standard.

The remainder of this article is organized as follows.
In the next section, the basic concepts and terminolo-
gies of Web Service security and BPEL are introduced.
Section 3 lists vulnerabilities and attacks on Web Ser-

Copyright and Reference Information: This material (preprint, accepted manuscript, or other author-distributable version) is provided to ensure timely dissemination of scholarly work.
Copyright and all rights therein are retained by the author(s) and/or other copyright holders. All persons copying this work are expected to adhere to the terms and constraints invoked by
these copyrights. This work is for personal use only and may not be redistributed without the explicit permission of the copyright holder. The definite version of this work is published as

[·] Meiko Jensen, Nils Gruschka and Ralph Herkenhoener. A survey of attacks on web services. Computer Science - Research and Development (CSRD), Volume 24, Number 4, pages 185–197, Nov.
2009. The original publication is available at www.springerlink.com.

See http://www.net.fim.uni-passau.de/papers/Jensen2009a for full reference details (BibTeX, XML).

2 Meiko Jensen et al.

vices. Section 4 then discusses general countermeasure
concepts, and Section 5 provides an attack classification
scheme. Finally, in Section 6 we conclude about the work
presented in this article.

2 Fundamentals

2.1 WS-Security

The most important specification addressing the securi-
ty needs of Web Services is WS-Security [21]. It collabo-
rates with the SOAP specifications, providing integrity,
confidentiality and authentication for Web Services. WS-
Security defines a SOAP header block—the so-called se-
curity header—that carries the WS-Security extensions.
Additionally, it defines how existing XML security stan-
dards like XML Signature [2] and XML Encryption [13]
are applied to SOAP messages.

XML Signature allows XML fragments to be digi-
tally signed to ensure integrity or to proof authenticity.
The result of the signing operation—i.e. the encrypted
digest—is placed in a Signature element, which again
is added to the security header.

XML Encryption allows XML fragments to be en-
crypted to ensure data confidentiality. The encrypted
fragment is replaced by an EncryptedData element con-
taining the ciphertext of the encrypted fragment as con-
tent.

Further, XML Encryption defines an EncryptedKey
element for key transportation purposes. The default ap-
plication for an encrypted key is a hybrid encryption: an
XML fragment is encrypted with a randomly generated
symmetric key, which itself is encrypted using the public
key of the message recipient. In SOAP messages, the
EncryptedKey element—if present—must appear inside
the security header.

In addition to encryption and signatures, WS-Security
defines security tokens suitable for transportation of di-
gital identities, e.g. UsernameToken or X.509 certificates.

An important characteristic of the mechanisms used
in WS-Security is their high flexibility. They are appli-
cable to arbitrary parts of the SOAP message, leaving
all other parts unattended. As a consequence, Web Ser-
vice servers and clients must negotiate a security policy
defining the WS-Security elements to be used.

WS-SecurityPolicy [17] provides an XML syntax for
declaring such security policies. In extension to the Web
Service description, a server may use a WS-Security-
Policy document for declaring its security needs. WS-
SecurityPolicy allows to specify the parts of a SOAP
message that shall be encrypted or signed, the algorithms
to use and the required security tokens.

2.2 BPEL

The Business Process Execution Language [1] is one of
the favorite candidates to become the predominant Web
Service composition standard. Each BPEL document de-
scribes the workflow of a so-called BPEL process. Such
a process consists of activities, representing instructions
to be executed by a BPEL runtime environment—the
BPEL engine. These activities can be categorized into
communication activities representing incoming or out-
going Web Service calls, structure activities for executi-
on order description, and other basic activities for ad-
ditional tasks, such as process variable access, temporal
constraints in workflow execution or fault handling. At
runtime, each deployed BPEL process may have mul-
tiple process instances, which are concurrent execution
contexts of the same process.

One key feature of BPEL-based Web Service compo-
sition is the ability to use asynchronous communication.
A regular Web Service call consists of a request messa-
ge, directly answered by a reply message. The requester
must keep the connection to the server until the rep-
ly message arrives. Using a special language construct,
BPEL enables asynchronous behavior, allowing the re-
quester to disconnect after sending its request. In this
case, the reply message is delivered via a new connection
initiated by the Web Service server, e.g. by invoking a
Web Service on the original requester. This communica-
tion pattern is useful for long-running tasks that cannot
be completed within timeout limits of a single Web Ser-
vice call.

The specification in use for specifying the callback
destination is WS-Addressing [11], allowing the reques-
ter to specify an abstract endpoint reference within its
request message, containing all information necessary for
the BPEL engine to invoke the Web Service on the re-
quester.

A further task a BPEL engine has to perform is mes-
sage correlation. As a BPEL engine may run several in-
stances of one BPEL process at the same time, it beco-
mes necessary to use designated message data fields to
identify the target process instance for an incoming Web
Service message. These are called correlation sets in the
context of BPEL.

3 Attacks

In this section we present a list of attacks on Web Ser-
vices. For each attack an abstract attack methodology
and impact is given, demonstrated by a concrete attack
execution where appropriate. Additionally, countermea-
sures against the particular attacks are discussed.

A Survey of Attacks on Web Services 3

3.1 Oversize Payload

One important category of Denial-of-Service attacks is
called Resource Exhaustion [24]. Such attacks target at
eliminating a service’s availability by exhausting the re-
sources of the service’s host system, like memory, pro-
cessing resources or network bandwidth. One “classic”
way to perform such a Resource Exhaustion attack is to
query a service using a very large request message. This
is called an Oversize Payload attack [19].

Against Web Services, an Oversize Payload attack is
quite easy to perform, due to the high memory consump-
tion of XML processing. The total memory usage caused
by processing one SOAP message is much higher than
just the message size. This is due to the fact that most
Web Service frameworks implement a tree-based XML
processing model like the Document Order Model (DOM
[12]). Using this model, an XML document—like a SOAP
message—is completely read, parsed and transformed in-
to an in-memory object representation, which occupies
much more memory space than the original XML docu-
ment. For common Web Service frameworks, we observed
a raise in memory consumption of factor 2 to 30.

Example: An Axis Web Service was attacked using
a large SOAP message document, which consisted of a
long list of elements considered as parameter values of
the Web Service operation1:

<Envelope>
<Body>
<getArrayLength>
<item>x</item>
<item>x</item>
<item>x</item>
...

</getArrayLength>
</Body>

</Envelope>

The SOAP message had a total size of approx. 1.8
MB. The message processing induced a full CPU load for
more than one minute and an additional memory usage
of more than 50 MB. Enlarging the message to approx.
1.9 MB even resulted in an out-of-memory exception.

An obvious countermeasure against Oversize Payload
attacks consists in restriction of the total buffer size (in
bytes) for incoming SOAP messages. In this case, it is
sufficient to check the actual message size and reject
any message exceeding the predefined limit. This me-
thod is used by the .NET 2.0 framework, which discards
all SOAP messages larger than 4 MB (in the default con-
figuration). While this countermeasure is very simple to
implement, it is not suitable for Web Service messages.

A more appropriate approach uses restrictions on the
XML infoset. This can be realized by modifying the XML
schema inside the Web Service description and validating

1 In all sample documents, namespaces were omitted for
simplification reasons.

incoming SOAP message to this schema [7]. Details of
this approach can be found in section 4.

3.2 Coercive Parsing

One of the first steps in processing a Web Service request
is parsing the SOAP message and transforming the con-
tent to make it accessible for the application behind the
Web Service. Especially when using namespaces, XML
can become verbose and complex in parsing, compared to
other message encodings. Thus, the XML parsing process
allows other possibilities for a special kind of Denial-of-
Service attacks, which is called Coercive Parsing attacks
[19].

Example: The following attack was performed tar-
geting an Axis2 Web Service. The attack used a conti-
nuous sequence of opening tags:

<x>
<x>
<x>
...

The attack resulted in a CPU usage of 100% on the target
system. The service’s availability was massively reduced,
and the incoming message was finally received with a
constant rate of 150 byte/s. Thus, the attack would per-
form well even if the attacker has a very low bandwidth
connection. The Web Service server did not abort the
connection, thus this attack could apparently be conti-
nued infinitely. In our experiment, we stopped the attack
after one hour.

Typical Coercive Parsing attacks targeting at resour-
ce exhaustion use a large number of namespace declara-
tions, oversized prefix names or namespace URIs or very
deeply nested XML structures. These types of attacks
require different countermeasures.

An attack that is based on complex or deeply nested
XML documents (like the one in the example above) can
be fended by using schema validation (compare section
4).

Attacks misusing namespace declarations are harder
to prevent. As the XML specification does neither limit
the number of namespace declarations per XML element
nor the length of the namespace URIs, any restriction on
the number or length of namespace declarations would
be arbitrary and could lead to unpredictable rejection of
messages.

3.3 SOAPAction Spoofing

The actual Web Service operation addressed by a SOAP
request is identified by the first child element of the
SOAP body element. Additionally, the optional HTTP
header field “SOAPAction” can be used for operation
identification. Although this value only represents a hint

4 Meiko Jensen et al.

to the actual operation, the SOAPAction field value is of-
ten used as the only qualifier for the requested operation.
This is based on the bogus optimization that evaluating
the HTTP header does not require any XML processing.

This twofold operation identification enables two clas-
ses of attacks. The first one is executed by a man-in-the-
middle attacker and tries to invoke an operation different
from the one specified inside the SOAP body. It is based
on modification of the HTTP header.

Example: The following attack was performed tar-
geting a .NET Web Service. The deployed service provi-
ded two operations: op1(string s) and op2(int x)—
with the respective SOAPAction and message element
also named opn. The following message (including the
HTTP header) was sent to the service:

POST /Service.asmx HTTP/1.1
...
SOAPAction: "op2"

<Envelope>
<Body>
<op1>
<s>Hello</s>

</op1>
</Body>

</Envelope>

The method call that was triggered by this message
was: op2(0). This shows that the operation is selected
solely by the SOAPAction value from the HTTP header.
Even worse, the “wrong” operation was executed despite
of incompatible parameter names and types.

The example shows how modifications of the HTTP
header can invoke methods that were not intended by
the SOAP message creator. As the HTTP header is not
secured by WS-Security and is newly created at every
SOAP intermediary, it can easily be modified.

The second class of SOAPAction spoofing attacks is
executed by the Web Service client and tries to bypass
an HTTP gateway.

Example: The following attack was performed tar-
geting an Axis2 Web Service. The deployed service pro-
vided two operations: hidden and visible—with the
respective SOAPAction and message element equally na-
med. The following message (including the HTTP hea-
der) was sent to the service:

POST /axis2/testService HTTP/1.1
...
SOAPAction: "visible"

<Envelope>
<Body>
<hidden />

</Body>
</Envelope>

The Axis2 server actually ignored the SOAPActi-
on value and invoked the hidden operation instead. If
an HTTP border gateway—which of course operates on
the HTTP header only—is configured to reject hidden
and accept visible accesses, this attack allows calling
hidden anyway.

A countermeasure to SOAPAction Spoofing attacks
would be to determine the operation by the SOAP body
content. Additionally, the operations determined by the
HTTP header and by the SOAP body must be compa-
red and any difference should be regarded as threat and
result in rejecting the Web Service request.

3.4 XML Injection

An XML Injection attack tries to modify the XML struc-
ture of a SOAP message (or any other XML document)
by inserting content—e.g. operation parameters—con-
taining XML tags. Such attacks are possible if the speci-
al characters ”<” and ”>” are not escaped appropriately.
At the Web Service server side, this content is regarded
as part of the SOAP message structure and can lead to
undesired effects.

Example: The following attack was executed against
a .NET Web Service. The deployed service method has
two parameters a and b, both of type xsd:int. This
service was invoked using the following SOAP message:

<Envelope>
<Body>
<HelloWorld>
<a> 1

 2
</HelloWorld>
</Body>

</Envelope>

Such a message could result from an XML Injecti-
on attack: 1 was inserted as parameter content
without escaping ”<” and ”>”. As the SOAP message
obviously violates the Web Service schema, it should be
rejected. But in fact, not only that the message was ac-
cepted by .NET, the resulting parameter values inside
the service application for this request were: a = 1, b =
0. Thus, the attacker was able to modify the value of b
just by modifying the content of a. It is easy to imagine
a scenario in which this can lead to unintended service
behavior, e.g. access to restricted data.

An important step in detecting such attacks is a strict
schema validation on the SOAP message, including data
type validation as possible (see section 4). This would
have rejected the message from the example attack.

A Survey of Attacks on Web Services 5

3.5 WSDL Scanning

The WSDL advertises a service’s operations including
parameters, data types and network bindings. Usually,
some of these operations should be accessed from the lo-
cal network only (here called internal operations), while
other operations are intended to be offered to the outer
network (here called external operations).

If the Web Service is created using common Web
Service framework tools, the (only) generated WSDL
contains all operations. In this case, an external client
gains knowledge of the internal operations and can invo-
ke them.

The first step in avoiding such accesses is providing
a separate WSDL to external clients that contains the
external operations only. However, as the Web Service
endpoint is still externally accessible (for invoking the
external operations), an attacker can try to guess the
omitted operations and call them. This attack is called
WSDL Scanning.

For example, an internet shop system needs methods
for placing an order for customers (sendOrder) and for
administrating the orders (adminOrders). Of course, the
latter one is intended to be called from within the shop’s
intranet only. If both sendOrder and adminOrders ope-
rations are offered by one Web Service, an attacker with
the knowledge of sendOrder can easily find the admi-
nistration method also. Other examples for vulnerable
internal operations are legacy and debug methods.

One countermeasure to this attack is deploying the
internal and external operations to separate Web Ser-
vices, preferable even on different servers. If this is not
applicable, invocations of internal operations must be
controlled and rejected if originated from an external
client. This is a typical task for a border gateway. Un-
fortunately, external and internal request messages ha-
ve the same destination IP address, TCP port and even
HTTP URL. Thus, packet filters and HTTP firewalls can
not decide whether the Web Service operation is allowed
or not. Therefore, a Web-Service-aware XML firewall is
required which is configured with the externally visible
operations.

3.6 Metadata Spoofing

A Web Service client retrieves all information regarding
a Web Service invocation (i.e. message format, network
location, security requirements etc.) from the metadata
documents provided by the Web Service server. Current-
ly, this metadata usually is distributed using communi-
cation protocols like HTTP or mail. These circumstan-
ces open new attack possibilities aiming at spoofing these
metadata. The most relevant attacks in this category are
WSDL Spoofing and Security Policy Spoofing.

Supposably most promising for WSDL Spoofing is
the modification of the network endpoints and the refe-
rences to security policies. A modified endpoint enables

the attacker to easily establish a man-in-the-middle at-
tack for eavesdropping or data modification. If additio-
nally a spoofed security policy with lower or no security
requirements is used, such attacks are possible despite
the use of WS-Security.

To avoid Metadata Spoofing, all metadata documents
must be carefully checked for authenticity. However, the
mechanisms for securing metadata documents are not
standardized—in contrast to methods for securing SOAP
messages. Additionally, a prior establishment of trust re-
lationships is required, which is not always possible or
intended.

3.7 Attack Obfuscation

Using WS-Security on Web Services introduces new pro-
blems concerning service availability. By providing con-
fidentiality to sensible data, XML Encryption can mask
message content from being inspected. As this encrypted
content can contain an intended attack—like Oversize
Payload, Coercive Parsing or XML Injection—encryption
can be used to conceal attacks.

Most problematical is that this kind of attacks is hard
to detect. To analyze the message structure—e.g. for
schema validation—decryption is necessary. There are
two possibilities on how a targeted system may be effec-
ted. If decryption is done after message validation, the
malicious message content may pass the message valida-
tion. If decryption is done before message validation, the
system may tie up during message decryption because
of the XML and cryptographic processing. Thus, even
if a system is able to counter the unencrypted attack,
obfuscated attacks may affect a target system anyway.

Example: During tests with Axis2 a weak spot for
obfuscated Oversize Payload attacks was revealed. In
this scenario a single SOAP message2 was sent to the
server. Sending a message containing an encrypted and
signed body with a size of 1 MB caused a full CPU load
for 23 seconds and resulted in an out-of-memory excep-
tion, while the Java runtime environment additionally
consumed approx. 90 MB of system memory. In com-
parison, unencrypted messages with message sizes of 20
MB and more were processed by the Axis2 server within
a processing time of beneath one second.

To counter obfuscated attacks, a good strategy is per-
forming message validation on decrypted content. The
best effort uses a stepwise decryption and validation.
This can help reducing memory consumption and ena-
bles an early detection of malicious message content.

3.8 Oversized Cryptography

Another problem introduced by WS-Security is the fle-
xible usability of security elements: encryption may be

2 The message was generated using also the Axis2 frame-
work.

6 Meiko Jensen et al.

Abb. 1 Example for an encrypted key chain (schematically)

used almost anywhere within a SOAP message, and the
flexible layout of the security header allows no strict sche-
ma validation. The various possibilities for using secu-
rity elements limits a schema validation to check each
single element, but neither order nor occurrence checks
for multiple elements are possible. This flexibility can be
misused for attacks.

A self-evident attack relies on an oversized securi-
ty header. If the target system processes or buffers the
whole security header, the target system may be effected
the same way as from an Oversize Payload attack (see
section 3.1).

A more complex attack with an oversized security
header uses chained encrypted keys. In this chain, each
encrypted key is used to encrypt the next key (see figure
1). Thus, the target system is forced to decrypt every en-
crypted key, as each key is needed for decryption of the
next one. This may effect the target system in two ways.
First, the target system must buffer every key, as it is
unknown before the end of message processing, whether
an encrypted key is used for other encrypted content.
This leads to high memory consumption. Second, the
decryption operations needs processing resources. Espe-
cially asymmetric algorithms, which are typically used
for key transport, are highly CPU consuming.

A similar attack uses a large number of nested en-
crypted blocks within a SOAP message (like a Russian
matryoshka doll). The target system must decrypt all
the nested blocks in order to process the inner content.
This induces a high CPU load due to the large number of
cryptographic operations. Additionally, if the decrypted
content is buffered before further processing, the memory
consumption is a multiple of the original message size.

As a countermeasure, the usage of WS-Security ele-
ments must be restricted, and messages exceeding these
limits must be rejected. In contrast to the Oversized Pay-
load and the Attack Obfuscation attack, schema based
restrictions are only partly effective: the security header

schema allows any kind and amount of security tokens,
and encrypted blocks are allowed nearly everywhere wi-
thin the SOAP message.

A better approach is accepting only the security ele-
ments explicitly required by the security policy. This
is called Strict WS-SecurityPolicy Enforcement and is
futher explained in section 4.

3.9 BPEL State Deviation

As BPEL processes need to be called by external com-
munication partners, a BPEL engine provides Web Ser-
vice endpoints accepting every possible incoming mes-
sage. Due to the fact that one BPEL process may have
many process instances running concurrently, these com-
munication endpoints are open for incoming connections
at any time. Thus, a malicious Web Service client might
attack these open Web Service endpoints using messages
that are correct regarding their message structure, but
that are not properly correlated to any existing process
instance. These correlation-invalid messages will be dis-
carded within the BPEL engine, but they cause a huge
amount of redundant work. Each message must be read
and processed completely, searching all existing process
instances for a match, before the message may safely
be discarded. Thus, the computational resources of the
BPEL engine get exhausted by processing such invalid
messages.

Example: The following attack was executed against
a BPEL engine running one BPEL process. The process
contained amongst other activities a sequence of two re-
ceive activities first and second, with only first in-
itiating a new process instance. Additionally, the process
defines a number of correlation properties for process in-
stance identification. The attack used SOAP messages
invoking operation second and containing correlation
properties that did not match to any running process
instance. The BPEL engine was attacked by a sequence
of 1000 messages, summing up to a total payload of 0.5
MB. The attack messages were correctly discarded by
the BPEL engine but resulted in an additional memory
consumption of 350 MB and a full CPU load for more
than 2 hours.

A second subtype of this attack uses correct correlati-
on properties, but targets a receive activity that is not
enabled in the actual state of the instance’s process exe-
cution. These messages are not correlation-invalid but
state-invalid. Their impact instead is the same: resource
exhaustion on the BPEL engine’s processing resources,
leading to a reduced quality of service or even a loss of
availability.

To fend state deviation attacks, it is necessary to
identify and reject correlation-invalid and state-invalid
messages, using as few computational resources as possi-
ble. Note that the identification of state deviation attack
messages differs widely for these two message types. A fi-

A Survey of Attacks on Web Services 7

rewall approach fending both attack types was described
in [10] and [15].

3.10 Instantiation Flooding

Every BPEL-based workflow definition contains at least
one communication activity that creates a new process
instance each time a message arrives. Such a process in-
stance immediately starts its execution according to the
instructions given in the process description. The execu-
tion will be paused each time a receive activity is reached,
continuing after reception of the expected message. By
reaching a termination point, execution is stopped and
the process instance is destroyed. Note that all execution
activities except receive activities are completely driven
by the BPEL engine alone. Just in case of receive, an
external message triggers the next executions.

Keeping this in mind, imagine an attack that conti-
nuously calls the instantiating activity’s endpoint. For
each incoming SOAP message, the BPEL engine will
create a new process instance and start its execution,
running each of these until they reach either a receive
activity or a termination point. As a result, the BPEL en-
gine will get into heavy load for message parsing, process
instantiation and activity execution, which will decrease
or even nullify the availability of the BPEL engine.

When examining instantiation flooding in the context
of BPEL, there are some behavioral distinctions to make
on the attack’s impact.

First, you have to realize that the BPEL engine itself
is not the only target reached by this attack. Each new-
ly created process instance is executed just like a valid
one, including all its outgoing Web Service requests to
external communication partners. Thus, these communi-
cation partners will undergo a raise in requests initiated
by the BPEL engine as well (see next section).

Further, note that the processing of a single attack
message and thus the resource exhaustion impact is de-
termined by one of the following circumstances.

– If the process under attack does not contain any re-
ceive activity (beside the initial one), all executions
will stop when reaching a termination point, destroy-
ing the initially created process instance. Thus, the
BPEL engine will undergo the “usual” traffic for each
attack message.

– If there exists a receive (or pick) activity on the
execution path chosen for the incoming attack mes-
sage, all created process instances will run up to that
receive activity. Here, according to the BPEL spe-
cification [1], all but the first request will cause a
BPEL execution fault, as there already exists a recei-
ving process instance with the same correlation data.
Thus, all but the first process instance will execute
the fault handler (if existing in the process descripti-
on), causing a rollback on all activities that have al-
ready been executed previously. This will double the

resource load for both BPEL engine and previously
requested communication peers that are included in
rollback procedures.

– If there exists a receive (or pick) activity on the
execution path, and the attack uses unique correlati-
on data for each attack message (such as including a
counter’s value in one of the correlation data fields),
none of the messages will cause a fault as stated abo-
ve. Instead, all attack messages will cause creation of
new process instances that all will run up to the first
receive activity and wait there forever (or—in case
of pick—as long as the timeout case specifies). As a
result, the BPEL engine will need a huge amount of
persistent storage for keeping those process instances
that never will complete. Further, the task of iden-
tifying the correct process instance for each message
arriving at such an overfull communication endpoint
will become really hard, as the message’s correlati-
on data must be compared to that of each process
instance waiting. Due to the huge number of such
waiting process instances, this task will exhaust re-
sources a lot more than before the attack.

The overall impact of both attack types depends on
the structure of the BPEL process, but it potentially is
a multiple of the load necessary to perform the attack.
Further, it may reach not just the BPEL engine, but
some of its communication partners as well (see next
section).

Fending such flooding attacks can only be achieved
by identification and rejection of semantically invalid re-
quests (attack messages). This is a non-trivial task, as
the decision on whether an incoming message is seman-
tically invalid can only be made after it has been pro-
cessed and identified. But even at this stage it is hardly
determinable whether a request was valid or malicious,
as the semantics of a process usually are not included in
the process description.

3.11 Indirect Flooding

Using the same methodology as presented in the pre-
vious section, the attack target of the indirect flooding
attack differs. The idea of this attack is to use the BPEL
engine as intermediate for an attack on a target system
“behind” the BPEL engine. Imagine an architecture as
shown in figure 2, and think of a BPEL process that
repeatedly calls a Web Service provided by the attack
target system, for example creating customer accounts
with several details.

By flooding the process within the BPEL engine with
instantiating attack messages (as shown in the previous
section), the BPEL engine will undergo a heavy load
itself, but it merely will cause an equally heavy load on
the target system. Thus, if the target system is not as
powerful as the BPEL engine, it will loose availability,
finally resulting in a Denial-of-Service.

8 Meiko Jensen et al.

Abb. 2 Architecture for Indirect Flooding Attack

Using this attack method, the attacker bypasses any
firewall on his direct link to the target system. Even if
the target system is not connected to the outside world
at all and only communicates with the BPEL engine, it
stays attackable. Note that this attack method can not
be fended using WS-Security or similar approaches, as
the connection between BPEL engine and target system
is used in a completely valid and trustful way.

Again, fending such attacks needs identification and
rejection of attack messages. The complication raised
here is that the responsibility for attack prevention is
at the BPEL engine, but the impact is on the target
system. Thinking of a scenario where BPEL engine and
target system communicate over inter-corporate boun-
daries, this task may become a political rather than a
technical problem. Further, as the workflow may spread
over multiple systems hosted by multiple companies, an
attack may propagate throughout the system, making it
difficult to identify its real entry point.

3.12 WS-Addressing Spoofing

The use of WS-Addressing for asynchronous Web Service
calls raises a lot of attack possibilities, which all have in
common that they use modified callback endpoint refe-
rences. The most simple approach is to use an arbitrary
invalid endpoint URL as callback endpoint reference. As
a result, the BPEL engine will perform the execution of
the process involved, then try to callback the initiator.
This will result either in a direct error (refused connecti-
on, HTTP server error or SOAP fault of any kind) or in
a timeout, depending on the endpoint URL the reference
denotes. Thus, the BPEL engine will raise an execution
fault and call matching fault handlers and compensati-
on handlers. All in all, the BPEL engine will execute
the full process and then perform a complete rollback.
Used as a flooding attack, this will cause heavy load on
the BPEL engine. Compared to usual flooding attacks
presented above, the workload produced by each attack
message is maximized, as—in most processes—the fault

will be thrown within the last communication activity of
the process.

The core countermeasure against any kind of WS-
Addressing spoofing is verification of the caller’s end-
point URL, ideally at the beginning of a process execu-
tion. This would enable early message rejection, preven-
ting the BPEL engine from unnecessary workload.

3.13 Middleware Hijacking

This attack uses WS-Addressing spoofing again, but it
points the attacker’s endpoint URL to an existing tar-
get system, running a real service at the URL specified
(see figure 3). As a result, the Web Service server (e.g. a
BPEL engine) will repeatedly try to “answer” the atta-
cker’s requests using this specified URL. Thus, the ser-
vice under attack receives a huge amount of requests
containing SOAPFaults or invalid SOAP messages (or
even worse: valid ones).

As Web Service servers are usually driven by powerful
server machines, it is possible that the target system will
suffer a Denial-of-Service before the hijacked server does
(see section 3.12). Thus, the attacker uses the power of
the server host system to tear down the target system.

As an example, the Axis2 Web Service framework
today is shipped with WS-Addressing module enabled
by default. Thus, any Web Service driven by Axis2 po-
tentially is vulnerable to become hijacked using WS-
Addressing Spoofing. Since SOAPFault messages are al-
ways delivered to the address specified in the <FaultTo>
SOAP header, it does not even need a valid service exe-
cution at the server to play the trick; a faulty message
with appropriate <FaultTo> address is sufficient.

Note that—just like with the indirect flooding attack
(see section 3.11)—it is possible to use this technique
to attack any system behind an internet firewall. Unli-
ke the general indirect flooding attack, the use of WS-
Addressing even enables the attacker to select the target
system of the attack himself.

A Survey of Attacks on Web Services 9

Abb. 3 Architecture for Middleware Hijacking Attack

4 General Countermeasure Approaches

Attacks on Web Services—as on any other system—rely
on a large number of different vulnerabilities. Therefo-
re, countermeasures against attacks are also very wide-
ranging. Nevertheless, there exist several general defense
mechanisms.

4.1 Schema Validation

Schema validation can be used against attacks, which use
messages that are not conform to the Web Service des-
cription. Such attacks are called deviation from protocol
message syntax [18]. By validating incoming messages to
the XML schema generated from the WSDL, the attack
can be detected—like shown in section 3.2 and 3.4.

Nevertheless, in current Web Service frameworks sche-
ma validation is not used or not activated by default.
This is mainly due to performance reasons, as schema
validation is expensive regarding CPU load and memory
consumption.

Schema validation is also effective against some other
attacks on Web Service applications, like SQL Injection
or Parameter Tampering [19], which also use non-valid
messages3.

Additionally, schema validation can be used as a foun-
dation for other countermeasures. One important exam-
ple is restricting the XML infoset to limit the memory
needed for processing the message—like discussed in sec-
tion 3.1. This is what we call Schema Hardening.

4.2 Schema Hardening

The general idea is to analyze a schema—e.g. from a Web
Service description—for constructs allowing unbounded
large or complex XML trees. These constructs are modi-
fied to fulfill finite boundaries.

3 As these attacks are not Web Service specific, but can
affect nearly every remote-accessable application, they are
not discussed within this article.

For example, if the Web Service description defines
an unbounded list of elements4, the list is converted into
a list with limited number of elements. Inside the XML
schema, the entry <element maxOccurs=”unbounded”>
is replaced by <element maxOccurs=”n”>, where n is a
finite number. For most services such a limit is easy to
define. An advantage of this restriction—compared to a
limit of the network buffer size—is that this limit can be
included in the service’s “official” Web Service descrip-
tion and thus becomes visible to clients in advance.

A second application of schema hardening could be
removal of non-public operations from the schema inside
the Web Service description (see section 3.5).

There are a number of further possibilities for har-
dening the Web Service description—and thus the XML
schema generated. Details can be found in [7]. The sa-
me article also discusses problems raised by processing
schemas containing large “maxOccurs” values.

4.3 Strict WS-SecurityPolicy Enforcement

A WS-SecurityPolicy policy defines a minimum set of se-
curity tokens that have to be included within a SOAP
message to fulfill the policy. The specification does not
provide a possibility for declaring their maximum usage.
So—as discussed before—an attacker may add an un-
bounded number of additional tokens, engaging the tar-
geted system in costly cryptographic computations and
forcing high memory consumption.

To avoid this, a good strategy is to consider the re-
quirements from the WS-SecurityPolicy document not
only as a minimum requirement, but also as a maximum
requirement. This means, a SOAP message must con-
tain exactly the security tokens specified by the security
policy—not less, not more.

As pointed out in [6], this limitation does not restrict
the functionality, but enables the detection of attacks

4 Such a construct is very common in practice, as Web Ser-
vice framework generate it automatically for every array pa-
rameter of a Web Service method.

10 Meiko Jensen et al.

using oversized cryptography and can help to mitigate
their effects.

4.4 Event-based SOAP message processing

The effectiveness of the countermeasures presented abo-
ve highly depends on their implementation. Checking a
SOAP message for conformance to the message schema
and the security policy requires XML and WS-Security
processing. These operations must be implemented very
resource-economically, otherwise the protection system
would be vulnerable to similar attacks as the Web Ser-
vice itself.

Attacks using large SOAP messages make tree-based
implementations like DOM unsuitable for a protection
system. Such implementations require that the message
must be completely read from the network and built into
a document tree before the SOAP message can be further
processed. Thus, before the inspection has started, a lar-
ge amount of memory has already been consumed. Some
tree-based implementations construct only parts of the
document tree, which slightly reduces memory consump-
tion, but does not eliminate the fundamental problem of
tree-based approaches; every XML document must be
completely read and stored [23].

A protection system should use an event-based XML
processing model like SAX [26]. The main advantage
of event-based XML processing is the possibility to de-
tect invalid message content and abort futher processing.
This way, memory consumption and CPU usage can be
minimized.

The results of the example attack described in sec-
tion 3.7 demonstrate the fact that Axis2 uses a stream-
based message processing model (called AXIOM [14]),
but Rampart—the Axis2 WS-Security component—does
not [4].

While schema validation is performed in an event-
based manner by a number of current implementations
(e.g. Xerces, .NET), WS-Security is usually still pro-
cessed using XML trees (e.g. Apache Rampart). WS-
Security-enabled messages include a number of references
between the WS-Security tokens, and therefore event-
based evaluation is hard to realize. However, assuming
some minor restrictions, it is possible to perform event-
based WS-Security validation [8].

Further, in [5], Gruschka shows methods for proces-
sing and validating Web Service messages in a complete
event-based manner. He also proves that the combination
of event-based processing and strict protocol validation
fends Denial-of-Service attacks.

4.5 WS-Security

A common misunderstanding about WS-Security is that
its usage automatically ensures full security for Web Ser-
vices. As shown before, WS-Security defines mechanisms

for enabling integrity and confidentiality for Web Ser-
vice messages. However, if the corresponding WS-Secu-
rityPolicy is not defined correctly, attacks on integrity
and confidentiality are possible using so-called XML re-
writing attacks [3; 20]. More important in the context
of this article, WS-Security does not define any direct
countermeasures against attacks like Denial-of-Service.

A well-known protective mechanism for service availa-
bility is access control. Access control restricts access to
the service to trusted users, which are supposed to be
less “dangerous” regarding attacks. Additionally, access
control enables accountability, allowing to exclude and
prosecute the attacker. WS-Security defines security to-
kens for authentication, which can be used for access
control systems.

Of course, access control can not fully eliminate the
threat of attacks. First of all, even trusted communi-
cation partners can—intentionally or unintentionally—
execute attacks.

Further, due to the fact that authentication needs
a key infrastructure, it is not applicable in B2C rela-
tionships, as there is no wide-spread key infrastructure
among private users.

Finally, the usage of WS-Security itself enables new
kinds of DoS attacks, as seen in sections 3.7–3.8. Thus,
authentication for Web Services must be performed in
consideration of such attacks. In [9] e.g. a Denial-of-
Service-robust authentication scheme for Web Service is
presented.

To resume, WS-Security is one of the important buil-
ding blocks for fending attacks but has to be applied
carefully and is—unlike often considered—not a magic
bullet against network threats.

5 Classification

In an effort to categorize and systemize these numerous
attacks, we took a closer look at their specific impacts.
Table 1 shows a classification of the attacks described
here, based on the following parameters.

Category: Describes the security property that is viola-
ted by the attack. Possible values are confidentiality
(C), data integrity (I), avaliability/Denial-of-Service
(A) or access control issues (AC).

Level: This value indicates whether the attack resides
on messaging layer (M) or on process layer (P) as
defined in [27].

Spreading: Attacks can be application-specific (A), tar-
geting a specific Web Service framework only, or they
can be due to a conceptional (C) flaw of the under-
lying protocol specifications.

Size: Some attacks target single Web Services, others
involve several communication partners. The Size va-
lue gives the usual or minimal number of involved
systems—apart from the attacker.

A Survey of Attacks on Web Services 11

Attack C
a
te

g
o
ry

L
e
v
e
l

S
p
re

a
d
in

g

S
iz

e

D
e
v
ia

ti
o
n

Dependencies Fendability A
m

p
li
fi
c
a
ti

o
n

Oversize Payload A M C 1 [S] none Schema validation (m),
Schema hardening (m-f)

28

Coercive Parsing A M C 1 [S] none Schema validation (m),
Schema hardening (m-f)

SOAPAction
Spoofing

AC M A 1 S missing comparison of ope-
ration and SOAPAction

match values (f)

XML Injection I M A 2+ A,[S] faulty processing of client-
side input data

Schema validation (m), client-
side message validation (f)

WSDL Scanning AC,C M A 1 A existence of secret operati-
ons in public WSDL

WSDL reduction (f)

Metadata
Spoofing

all M C 1+ A ability to access/modify
metadata documents

authenticity check of metadata
documents (f)

Attack
Obfuscation

A M C 1 A,[S] WS-Security processing
enabled

none 90

Oversized
Cryptography

A M C 1 [S] WS-Security processing
enabled

strict security policy
enforcement (m-f)

BPEL State
Deviation

A P A 1 O BPEL process with more
than one inbound endpoint

stateful firewalling (m) 700

Instantiation
Flooding

A P C 1 A,[O] none (knowledge of correla-
tion sets fortifies impact)

efficient correlation set
matching (m)

Indirect Flooding A,AC P A 2+ A,[O] appropriate BPEL process none
WS-Addressing
Spoofing

A,C M C 2 A WS-Addressing processing
enabled

address validity / access
authorization check (m-f)

Middleware
Hijacking

A,AC P C 2+ A,[O] asynchronous BPEL pro-
cess

address validity / access
authorization check (m-f)

Tabelle 1 Attack Classification

Deviation: Describes whether the attack generally uses
syntactical (S), sequential (O), or semantical/appli-
cation-specific (A) protocol deviation techniques. A
[·] indicates potential, but not necessary deviation.

Dependencies: This parameter indicates how far an
attack relies on prerequisites at the targeted Web Ser-
vice server, e.g. the existence of a specific operation
or a necessary flaw in the Web Service description.

Fendability: A measure on how effective potential coun-
termeasures can be in terms of mitigating (m) or
even completely fending (f) the particular attacks.
The intended countermeasure concepts are given as
well. Note that the general countermeasure of perfor-
ming access control is applicable to any of the attacks
presented here, but it only mitigates the attack thre-
at, and does not completely annihilate the possibility
for an attack.

Amplification: This factor—as defined in [16]— is only
applicable for flooding attacks and describes the rela-
tion of attack performance workload to attack impact
workload. For example, in terms of message size re-
lated to memory usage, an amplification factor of 4
means that every byte of attack message data causes
an allocation of 4 bytes of target system’s memory.

6 Conclusion

Like every upcoming technology, Web Services are chal-
lenged by several security issues. The attacks presented
in this article illustrate how easily an unsufficiently se-
cured Web Service server can be affected with a single or
few messages. While some of the vulnerabilities are cau-
sed by implementation weaknesses, most of them exploit
fundamental protocol flaws, abusing the given flexibility
within WS-related standards.

Thus, in order to cope with these threats, Web Ser-
vice developers and adopters must be aware of the vulne-
rabilities and their potential impact. Further, researchers
need to examine the existing Web Service standards for
further vulnerabilities in order to develop more accurate
countermeasures. Only improvement of attack mitiga-
tion techniques along with integration into every Web-
Service-driven system will face up with these challenges
and help to make Web Services as secure as possible.

References

1. Andrews T, Curbera F, Dholakia H, Goland Y, Klein J,
Leymann F, Liu K, Roller D, Smith D, Thatte S, Tricko-

12 Meiko Jensen et al.

vic I, Weerawarana S (2003) Business Process Execution
Language for Web Services Version 1.1. Oasis Standard

2. Bartel M, Boyer J, Fox B, LaMacchia B, Simon E (2002)
XML-Signature Syntax and Processing. W3C Recom-
mendation

3. Bhargavan K, Fournet C, Gordon AD, O’Shea G (2005)
An advisor for Web Services security policies. In: SWS
’05: Proceedings of the 2005 workshop on Secure web
services, ACM Press, New York, NY, USA, pp 1–9

4. Fernando R (2006) Secure web services with apache ram-
part. Tech. rep., WSO2 Oxygen Tank

5. Gruschka N (2008) Schutz von Web Services durch erwei-
terte und effiziente Nachrichtenvalidierung. PhD thesis,
Christian-Albrechts-University of Kiel, Germany

6. Gruschka N, Herkenhöner R (2006) WS-SecurityPolicy
Decision and Enforcement for Web Service Firewalls. In:
Proceedings of the IEEE/IST Workshop on Monitoring,
Attack Detection and Mitigation

7. Gruschka N, Luttenberger N (2006) Protecting Web Ser-
vices from DoS Attacks by SOAP Message Validation.
In: Proceedings of the IFIP TC-11 21. International In-
formation Security Conference (SEC 2006)

8. Gruschka N, Luttenberger N, Herkenhöner R (2006)
Event-based SOAP message validation for WS-
SecurityPolicy-Enriched web services. In: Proceedings of
the 2006 International Conference on Semantic Web &
Web Services

9. Gruschka N, Herkenhöner R, Luttenberger N (2007) Ac-
cess Control Enforcement for Web Services by Event-
Based Security Token Processing. In: Braun T, Carle G,
Stiller B (eds) 15. ITG/Gi Fachtagung Kommunikation
in Verteilten Systemen (KiVS 2007), pp 371–382

10. Gruschka N, Jensen M, Luttenberger N (2007) A Stateful
Web Service Firewall for BPEL. Proceedings of the IEEE
International Conference on Web Services (ICWS 2007)

11. Gudgin M, Hadley M, Rogers T (2006) Web Services Ad-
dressing 1.0 - SOAP Binding. W3C Recommendation

12. Hors AL, Hegaret PL, Wood L, Nicol G, Robie J, Cham-
pion M, Byrne S (2004) Document Object Model (DOM)
Level 3 Core Specification. W3C Recommendation

13. Imamura T, Dillaway B, Simon E (2002) XML Encryp-
tion Syntax and Processing. W3C Recommendation

14. Jayasinghe D (2006) SOA development with Axis2: Un-
derstanding Axis2 basis. IBM developerWorks

15. Jensen M (2008) BPEL Firewall - Abwehr von Angrif-
fen auf zustandsbehaftete Web Services (german). VDM
Verlag Dr. Müller, ISBN 9783836485517

16. Jensen M, Gruschka N, Luttenberger N (2008) The Im-
pact of Flooding Attacks on Network-based Services. In:
Proceedings of the IEEE International Conference on
Availability, Reliability and Security

17. Kaler C, Nadalin (editors) A (2005) Web Services Secu-
rity Policy Language (WS-SecurityPolicy) 1.1

18. Leiwo J, Nikander P, Aura T (2000) Towards network de-
nial of service resistant protocols. In: Proc. of the 15th In-
ternational Information Security Conference (IFIP/SEC)

19. Lindstrom P (2004) Attacking and Defending Web Ser-
vice. A Spire Research Report

20. McIntosh M, Austel P (2005) XML signature element
wrapping attacks and countermeasures. In: SWS ’05:
Proceedings of the 2005 workshop on Secure web ser-
vices, ACM Press, New York, NY, USA, pp 20–27

21. Nadalin A, Kaler C, Monzillo R, Hallam-Baker P (2006)
Web Services Security: SOAP Message Security 1.1 (WS-
Security 2004)

22. Needham RM (1994) Denial of service: an example. Com-
mun ACM 37(11):42–46

23. Noga ML, Schott S, Löwe W (2002) Lazy XML proces-
sing. In: DocEng ’02: Proceedings of the 2002 ACM sym-
posium on document engineering, ACM Press, New York,

NY, USA, pp 88–94
24. Schäfer G (2005) Sabotageangriffe auf Kommunika-

tionsstrukturen: Angriffstechniken und Abwehrmanah-
men. PIK 28 pp 130–139

25. Smith A (2007) Estonia: Under siege on the web. Time
Magazine URL http://www.time.com/time/magazine/
article/0,9171,1626744,00.html

26. The SAX Project (2002) Simple API for XML–SAX 2.0.1
URL http://www.saxproject.org

27. Weerawarana S, Curbera F, Leymann F, Storey T, Fer-
guson DF (2005) Web Services Platform Architecture:
SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging, and More. Prentice Hall PTR

Meiko Jensen studied com-
puter science at the Christian-
Albrechts-University of Kiel,
Germany, and received his de-
gree in computer science in
2007. Currently he is a Ph.D.
student at the Horst Görtz In-
stitute for IT-Security in Bo-
chum, researching in the field
of Web Service security, and is
particularly interested in XML
and service composition secu-
rity, security modeling, and at-
tacks on Web Services. Meiko
is member of ACM and GI.

Nils Gruschka studied com-
puter science at the Christian-
Albrechts-University of Kiel,
Germany, and received his
Ph.D. in computer science in
2008. His thesis presents me-
thods for Web Service protecti-
on using efficient Web Service
message validation. Currently
he works as a researcher scien-
tist at NEC Laboratories Eu-
rope in the field of Web Ser-
vice security. Nils is member of
ACM and GI.

Ralph Herkenhöner stu-
died computer science at the
Christian-Albrechts-University
of Kiel, Germany, and received
his degree in computer science
in 2006. Currently he is a
Ph.D. student at the Universi-
ty of Passau, researching in the
field of process and security
modeling. In particular, he is
interested in methodologies for
proving privacy protection in
business processes and IT en-
vironments. Ralph is member
of ACM and GI.

